Sign-changing solutions for a kind of Klein-Gordon-Maxwell system

被引:4
作者
Zhang, Qi [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
SCHRODINGER-POISSON SYSTEM; GROUND-STATE SOLUTIONS; NODAL SOLUTIONS; SOLITARY WAVES; EQUATION; EXISTENCE;
D O I
10.1063/5.0042116
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the subcritical Klein-Gordon-Maxwell system -& UDelta;u + V(x)u - (2 omega + phi)phi u = f(u) coupled with & UDelta;phi=(omega+phi)u2,x & ISIN;R3 is studied. Under general assumptions on V, f, by using the abstract critical theorems, which are derived from the minimax method and the method of invariant sets of descending flow, we obtain the existence of sign-changing solutions for this system, in particular, a sequence of high energy sign-changing solutions is obtained if f is odd.
引用
收藏
页数:9
相关论文
共 25 条
[1]   Improved estimates and a limit case for the electrostatic Klein-Gordon-Maxwell system [J].
Azzollini, A. ;
Pisani, L. ;
Pomponio, A. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2011, 141 :449-463
[2]  
Azzollini A, 2010, TOPOL METHOD NONL AN, V35, P33
[3]   Nodal solutions of a p-Laplacian equation [J].
Bartsch, T ;
Liu, ZL ;
Weth, T .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 :129-152
[4]   On a superlinear elliptic p-Laplacian equation [J].
Bartsch, T ;
Liu, ZL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 198 (01) :149-175
[5]   Nonlinear Schrodinger equations with steep potential well [J].
Bartsch, T ;
Pankov, A ;
Wang, ZQ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (04) :549-569
[6]   Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (04) :409-420
[7]   The nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (09) :6065-6072
[8]   Localized nodal solutions for a critical nonlinear Schrodinger equation [J].
Chen, Shaowei ;
Liu, Jiaquan ;
Wang, Zhi-Qiang .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (02) :594-640
[9]   IMPROVED RESULTS FOR KLEIN-GORDON-MAXWELL SYSTEMS WITH GENERAL NONLINEARITY [J].
Chen, Sitong ;
Tang, Xianhua .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (05) :2333-2348
[10]   Improved results for Klein-Gorden-Maxwell systems with critical growth [J].
Chen, Zhi ;
Tang, Xianhua ;
Qin, Lei ;
Qin, Dongdong .
APPLIED MATHEMATICS LETTERS, 2019, 91 :158-164