Transient rheology of the oceanic asthenosphere following the 2012 Indian Ocean Earthquake inferred from geodetic data

被引:20
|
作者
Pratama, Cecep [1 ]
Ito, Takeo [1 ]
Sasajima, Ryohei [2 ]
Tabei, Takao [3 ]
Kimata, Fumiaki [4 ]
Gunawan, Endra [5 ]
Ohta, Yusaku [6 ]
Yamashina, Tadashi [3 ]
Ismail, Nazli [7 ]
Nurdin, Irwandi [7 ]
Sugiyanto, Didik [7 ]
Muksin, Umar [7 ]
Meilano, Irwan [8 ]
机构
[1] Nagoya Univ, Grad Sch Environm Studies, Nagoya, Aichi, Japan
[2] Int Inst Seismol & Earthquake Engn, Ibaraki, Japan
[3] Kochi Univ, Dept Appl Sci, Akebono, Japan
[4] Tono Res Inst Earthquake Sci, Mizunami, Japan
[5] Bandung Inst Technol, Grad Res Earthquake & Act Tecton, Bandung, Indonesia
[6] Tohoku Univ, Grad Sch Sci, Sendai, Miyagi, Japan
[7] Syiah Kuala Univ, Dept Phys, Banda Aceh, Indonesia
[8] Bandung Inst Technol, Fac Earth Sci & Technol, Bandung, Indonesia
关键词
Asthenosphere; Lithosphere; Viscosity; Transient rheology; GNSS; POSTSEISMIC DEFORMATION; VISCOELASTIC RELAXATION; OKI EARTHQUAKE; DRIVING FORCES; WHARTON BASIN; UPPER-MANTLE; FAULT SLIP; SUBDUCTION; AFTERSLIP; SUMATRA;
D O I
10.1016/j.jseaes.2017.07.049
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Postseismic motion in the middle-field (100-500 km from the epicenter) geodetic data resulting from the 2012 Indian Ocean earthquake exhibited rapid change during the two months following the rupture. This pattern probably indicates multiple postseismic deformation mechanisms and might have been controlled by transient rheology. Therefore, the relative contribution of transient rheology in the oceanic asthenosphere and afterslip in the oceanic lithosphere should be incorporated to explain short- and long-term transitional features of post seismic signals. In this study, using two years of post-earthquake geodetic data from northern Sumatra, a three-dimensional spherical-earth finite-element model was constructed based on a heterogeneous structure and incorporating transient rheology. A rheology model combined with stress-driven afterslip was estimated. Our best fit model suggests an oceanic lithosphere thickness of 75 km with oceanic asthenosphere viscosity values of 1 x 10(17) Pas and 2 x 10(18) Pa s for the Kelvin and Maxwell viscosity models, respectively. The model results indicate that horizontal landward motion and vertical uplift in northern Sumatra require viscoelastic relaxation of the oceanic asthenosphere coupled with afterslip in the lithosphere. The present study demonstrates that transient rheology is essential for reproducing the rapidly changing motion of postseismic deformation in the middle-field area.
引用
收藏
页码:50 / 59
页数:10
相关论文
共 50 条
  • [11] Geodetic model of the 2016 Central Italy earthquake sequence inferred from InSAR and GPS data
    Cheloni, D. k
    De Novellis, V. T
    Albano, M. S
    Antonioli, A. N
    Anzidei, M. K
    Atzori, S. P
    Avallone, A. S
    Bignami, C. T
    Bonano, M. R
    Calcaterra, S. T
    Castaldo, R. B
    Casu, F. C
    Cecere, G. C
    De Luca, C. C
    Devoti, R. C
    Di Bucci, D. K
    Esposito, A. A
    Galvani, A. T
    Gambino, P. S
    Giuliani, R. T
    Lanari, R. R
    Manunta, M. K
    Manzo, M. C
    Mattone, M. P
    Montuori, A. T
    Pepe, A. R
    Pepe, S. S
    Pezzo, G. G
    Pietrantonio, G. M
    Polcari, M. P
    Riguzzi, F. T
    Salvi, S. R
    Sepe, V. C
    Serpelloni, E. T
    Solaro, G. R
    Stramondo, S. C
    Tizzani, P. T
    Tolomei, C. R
    Trasatti, E. T
    Valerio, E. T
    Zinno, I. S
    Doglioni, C. R
    GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (13) : 6778 - 6787
  • [12] Slip distribution of the 2011 off the Pacific coast of Tohoku Earthquake inferred from geodetic data
    Ito, Takeo
    Ozawa, Kazuhiro
    Watanabe, Tsuyoshi
    Sagiya, Takeshi
    EARTH PLANETS AND SPACE, 2011, 63 (07): : 627 - 630
  • [13] Source process of the 1923 Kanto earthquake inferred from historical geodetic, teleseismic, and strong motion data
    Reiji Kobayashi
    Kazuki Koketsu
    Earth, Planets and Space, 2005, 57 : 261 - 270
  • [14] Fault location and source process of the Boumerdes, Algeria, earthquake inferred from geodetic and strong motion data
    Semmane, F
    Campillo, M
    Cotton, F
    GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (01) : 1 - 4
  • [15] Source process of the 1923 Kanto earthquake inferred from historical geodetic, teleseismic, and strong motion data
    Kobayashi, R
    Koketsu, K
    EARTH PLANETS AND SPACE, 2005, 57 (04): : 261 - 270
  • [16] Geodetic Model of the 2018 Mw 7.2 Pinotepa, Mexico, Earthquake Inferred from InSAR and GPS Data
    Li, Yanchuan
    Shan, Xinjian
    Zhu, Chuanhua
    Qiao, Xin
    Zhao, Lei
    Qu, Chunyan
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2020, 110 (03) : 1115 - 1124
  • [17] Rupture Process of the M 6.5 Stanley, Idaho, Earthquake Inferred from Seismic Waveform and Geodetic Data
    Pollitz, Fred F.
    Hammond, William C.
    Wicks, Charles W.
    SEISMOLOGICAL RESEARCH LETTERS, 2021, 92 (02) : 699 - 709
  • [18] Internal architecture of La Reunion (Indian Ocean) inferred from geophysical data
    Gailler, Lydie-Sarah
    Lenat, Jean-Francois
    JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH, 2012, 221 : 83 - 98
  • [19] Lithospheric rheology in southern Italy inferred from postseismic viscoelastic relaxation following the 1980 Irpinia earthquake
    Dalla Via, G
    Sabadini, R
    De Natale, G
    Pingue, F
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2005, 110 (B6) : 1 - 16
  • [20] Velocity gradients in the northern Indian Ocean inferred from earthquake moment tensors and relative plate velocities
    Tinnon, MJ
    Holt, WE
    Haines, AJ
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1995, 100 (B12) : 24315 - 24329