Fundamental and vortex gap solitons in quasiperiodic photonic lattices

被引:12
作者
Huang, Changming [1 ]
Dong, Liangwei [2 ]
Deng, Hanying [3 ]
Zhang, Xiao [4 ]
Gao, Penghui [1 ]
机构
[1] Changzhi Univ, Dept Phy, Lab Opt Field Manipulat, Changzhi 046011, Shanxi, Peoples R China
[2] Shaanxi Univ Sci & Technol, Dept Phys, Xian 710021, Peoples R China
[3] Guangdong Polytech Normal Univ, Sch Photoelect Engn, Guangzhou 510665, Peoples R China
[4] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
LOCALIZATION; LIGHT; DELOCALIZATION; TRANSITION;
D O I
10.1364/OL.443051
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We address the existence and stability of fundamental, single-charged vortex, and double-charged vortex gap solitons in two-dimensional quasiperiodic photonic lattices imprinted in a Kerr-type medium. Fundamental and vortex gap solitons can bifurcate from linear localized states or their combination supported by quasiperiodic lattices for both defocusing and focusing nonlinearities. We find that the three types of solitons mentioned above are stable in the entire existence domain for defocusing nonlinearities, and that they can also be stable at a lower power level for focusing nonlinearities. At higher power, unstable solitons are characterized by a ring-shaped symmetry-breaking distribution, and the unique spot profile formed is repeatedly observed with changes in propagation distance. (C) 2021 Optical Society of America.
引用
收藏
页码:5691 / 5694
页数:4
相关论文
共 50 条
[41]   Matter-wave gap solitons and vortices of dense Bose-Einstein condensates in Moire optical lattices [J].
Liu, Xiuye ;
Zeng, Jianhua .
CHAOS SOLITONS & FRACTALS, 2023, 174
[42]   Equilibrium phases of two-dimensional bosons in quasiperiodic lattices [J].
Zhang, C. ;
Safavi-Naini, A. ;
Capogrosso-Sansone, B. .
PHYSICAL REVIEW A, 2015, 91 (03)
[43]   Inhibition and Reconstruction of Zener Tunneling in Photonic Honeycomb Lattices [J].
Chang, Yi-Jun ;
Lu, Yong-Heng ;
Yang, Ying-Yue ;
Wang, Yao ;
Zhou, Wen-Hao ;
Wang, Xiao-Wei ;
Jin, Xian-Min .
ADVANCED MATERIALS, 2022, 34 (28)
[44]   Microscopic theory of photonic band gaps in optical lattices [J].
Samoylova, M. ;
Piovella, N. ;
Bachelard, R. ;
Courteille, Ph. W. .
OPTICS COMMUNICATIONS, 2014, 312 :94-98
[45]   Non-Hermitian butterfly spectra in a family of quasiperiodic lattices [J].
Wang, Li ;
Wang, Zhenbo ;
Chen, Shu .
PHYSICAL REVIEW B, 2024, 110 (06)
[46]   Hamiltonian tomography of photonic lattices [J].
Ma, Ruichao ;
Owens, Clai ;
LaChapelle, Aman ;
Schuster, David I. ;
Simon, Jonathan .
PHYSICAL REVIEW A, 2017, 95 (06)
[47]   Detection of Nonlinearity in Photonic Lattices [J].
Jia, Pengbo ;
Li, Zhaochen ;
Xia, Shiqiang ;
Bongiovanni, Domenico ;
Tang, Liqin ;
Qi, Wenrong ;
Zhang, Yingying ;
Zhao, Xingdong ;
Su, Keyu ;
Zhu, Zunlue ;
Hu, Yi .
LASER & PHOTONICS REVIEWS, 2025, 19 (04)
[48]   Photonic properties of metallic-mean quasiperiodic chains [J].
Thiem, S. ;
Schreiber, M. .
EUROPEAN PHYSICAL JOURNAL B, 2010, 76 (03) :339-345
[49]   The evolution of the solitons in periodic photonic moire lattices controlled by rotation angle with saturable self-focusing nonlinearity media [J].
Zhang, Yingying ;
Qin, Yali ;
Zheng, Huan ;
Ren, Hongliang .
LASER PHYSICS, 2022, 32 (04)
[50]   Gap solitons and slow light [J].
Conti, C ;
Assanto, G ;
Trillo, S .
JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2002, 11 (03) :239-259