The Specification and Impact of Prior Distributions for Categorical Latent Variable Models

被引:2
|
作者
Depaoli, Sarah [1 ]
机构
[1] Univ Calif Merced, Sch Social Sci Humanities & Arts, Quantitat Psychol, 5200 N Lake Rd, Merced, CA 95343 USA
关键词
Bayesian estimation; latent class analysis; categorical latent variable models; prior distributions; CONFIRMATORY FACTOR-ANALYSIS; MONTE-CARLO; INFORMATIVE PRIORS; MIXTURE-MODELS; BAYESIAN-ESTIMATION; MAXIMUM-LIKELIHOOD; CLASS SEPARATION; EMPIRICAL BAYES; PARAMETERS; INFERENCE;
D O I
10.1080/10705511.2021.1997605
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Latent class models can exhibit poor parameter recovery and low convergence rates under the traditional frequentist estimation approach. Bayesian estimation may be a viable alternative for estimating latent class models-especially when categorical items are present and priors can be placed directly on the categorical item-thresholds. We present a simulation study involving Bayesian latent class analysis (LCA) with categorical items. We demonstrate that the frequentist framework and the Bayesian framework with diffuse (non-informative) priors are unable to properly recover parameters (e.g., latent class item-thresholds); a substantive interpretation of the obtained results would lead to improper conclusions under these estimation conditions. However, specifying (weakly) informative priors within the Bayesian framework generally produced accurate parameter recovery, indicating that this may be a more viable estimation approach for LCA models with categorical indicators. The paper concludes with a general discussion surrounding the advantages of Bayesian estimation for LCA models.
引用
收藏
页码:350 / 367
页数:18
相关论文
共 50 条
  • [31] A Bayesian analysis of bivariate ordered categorical responses using a latent variable regression model: Application to diabetic retinopathy data
    Kazemnejad, Anoshirvan
    Zayeri, Farid
    Hamzah, Nor Aishah
    Gharaaghaji, Rasool
    Salehi, Masoud
    SCIENTIFIC RESEARCH AND ESSAYS, 2010, 5 (11): : 1264 - 1273
  • [32] Categorical latent variable modeling utilizing fuzzy clustering generalized structured component analysis as an alternative to latent class analysis
    Ryoo J.H.
    Park S.
    Kim S.
    Behaviormetrika, 2020, 47 (1) : 291 - 306
  • [33] Integrated Choice and Latent Variable Models for evaluating Flexible Transport Mode choice
    Politis, Ioannis
    Papaioannou, Panagiotis
    Basbas, Socrates
    RESEARCH IN TRANSPORTATION BUSINESS AND MANAGEMENT, 2012, 3 : 24 - 38
  • [34] Bayesian semiparametric analysis for latent variable models with mixed continuous and ordinal outcomes
    Xia, Yemao
    Gou, Jianwei
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2016, 45 (03) : 451 - 465
  • [35] Efficient estimation of generalized linear latent variable models
    Niku, Jenni
    Brooks, Wesley
    Herliansyah, Riki
    Hui, Francis K. C.
    Taskinen, Sara
    Warton, David I.
    PLOS ONE, 2019, 14 (05):
  • [36] Latent variable models with mixed continuous and polytomous data
    Shi, JQ
    Lee, SY
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2000, 62 : 77 - 87
  • [37] On the role of latent variable models in the era of big data
    Bartolucci, Francesco
    Bacci, Silvia
    Mira, Antonietta
    STATISTICS & PROBABILITY LETTERS, 2018, 136 : 165 - 169
  • [38] Linear latent variable models: the lava-package
    Klaus Kähler Holst
    Esben Budtz-Jørgensen
    Computational Statistics, 2013, 28 : 1385 - 1452
  • [39] Performance of Nonrecursive Latent Variable Models under Misspecification
    Price, Larry R.
    Gonzalez, Daniel P.
    Whittaker, Tiffany A.
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2019, 26 (01) : 12 - 23
  • [40] Linear latent variable models: the lava-package
    Holst, Klaus Kahler
    Budtz-Jorgensen, Esben
    COMPUTATIONAL STATISTICS, 2013, 28 (04) : 1385 - 1452