Hybrid coupling of a one-dimensional energy-transport Schrodinger system

被引:0
作者
Jourdana, Clement [1 ]
Pietra, Paola [2 ]
Vauchelet, Nicolas [3 ,4 ]
机构
[1] Univ Grenoble Alpes, Lab Jean Kuntzmann, F-38000 Grenoble, France
[2] CNR, Ist Matemat Applicata & Tecnol Informat E Magenes, Via Ferrata 1, I-27100 Pavia, Italy
[3] UPMC Univ Paris 06, Lab Jacques Louis Lions, CNRS, UMR 7598, F-75005 Paris, France
[4] INRIA Paris Rocquencourt, EPI MAMBA, F-75005 Paris, France
来源
MONATSHEFTE FUR MATHEMATIK | 2017年 / 184卷 / 04期
关键词
Schrodinger equation; Boltzmann equation; Energy-transport system; Spherical harmonic expansion system; Semiconductors; Interface conditions; Mixed finite elements; DRIFT-DIFFUSION MODEL; PARTIALLY QUANTIZED PARTICLES; MAXIMUM-ENTROPY PRINCIPLE; MACROSCOPIC MODELS; SUBBAND MODEL; SEMICONDUCTORS; APPROXIMATION; SIMULATIONS; EQUATIONS; COMPUTATION;
D O I
10.1007/s00605-016-1008-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider one dimensional coupled classical-quantum models for quantum semiconductor device simulations. The coupling occurs in the space variable: the domain of the device is divided into a region with strong quantum effects (quantum zone) and a region where quantum effects are negligible (classical zone). In the classical zone, transport in diffusive approximation is modeled through diffusive limits of the Boltzmann transport equation. It can lead to an energy-transport model, obtained using a Spherical Harmonic Expansion model as intermediate step. The quantum transport is described by the Schrodinger equation. The aim of this work is to focus on the derivation of boundary conditions at the interface between the classical and quantum regions. Numerical simulations are provided for a resonant tunneling diode with the energy-transport model.
引用
收藏
页码:563 / 596
页数:34
相关论文
共 50 条
[41]   Convergence and instability of iterative procedures on the one-dimensional Schrodinger-Poisson problem [J].
Duarte, C. A. .
COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (09) :1501-1509
[42]   Schwarz waveform relaxation method for one-dimensional Schrodinger equation with general potential [J].
Besse, Christophe ;
Xing, Feng .
NUMERICAL ALGORITHMS, 2017, 74 (02) :393-426
[43]   FAST SOLUTION OF SCHRODINGER EQUATION BASED ON COMPLEX ONE-DIMENSIONAL POTENTIAL WELLS [J].
Liu, Zihao ;
Wang, Xiang .
PROCEEDINGS OF 2024 31ST INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, VOL 2, ICONE31 2024, 2024,
[44]   Dispersion estimates for one-dimensional Schrodinger and Klein-Gordon equations revisited [J].
Egorova, I. E. ;
Kopylova, E. A. ;
Marchenko, V. A. ;
Teschl, G. .
RUSSIAN MATHEMATICAL SURVEYS, 2016, 71 (03) :391-415
[45]   A new approach to solve the one-dimensional Schrodinger equation using a wavefunction potential [J].
Hojman, Sergio A. ;
Asenjo, Felipe A. .
PHYSICS LETTERS A, 2020, 384 (36)
[46]   Absorbing boundary conditions for the one-dimensional Schrodinger equation with an exterior repulsive potential [J].
Antoine, Xavier ;
Besse, Christophe ;
Klein, Pauline .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (02) :312-335
[47]   Superconvergence of Local Discontinuous Galerkin Method for One-Dimensional Linear Schrodinger Equations [J].
Zhou, Lingling ;
Xu, Yan ;
Zhang, Zhimin ;
Cao, Waixiang .
JOURNAL OF SCIENTIFIC COMPUTING, 2017, 73 (2-3) :1290-1315
[48]   Gaussian beam formulations and interface conditions for the one-dimensional linear Schrodinger equation [J].
Yin, Dongsheng ;
Zheng, Chunxiong .
WAVE MOTION, 2011, 48 (04) :310-324
[50]   Relaxation Limit of the One-Dimensional Bipolar Isentropic Euler-Poisson System in the Bound Domain [J].
Liu, Heyu ;
Li, Yeping .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2025, 48 (03)