Hybrid coupling of a one-dimensional energy-transport Schrodinger system

被引:0
作者
Jourdana, Clement [1 ]
Pietra, Paola [2 ]
Vauchelet, Nicolas [3 ,4 ]
机构
[1] Univ Grenoble Alpes, Lab Jean Kuntzmann, F-38000 Grenoble, France
[2] CNR, Ist Matemat Applicata & Tecnol Informat E Magenes, Via Ferrata 1, I-27100 Pavia, Italy
[3] UPMC Univ Paris 06, Lab Jacques Louis Lions, CNRS, UMR 7598, F-75005 Paris, France
[4] INRIA Paris Rocquencourt, EPI MAMBA, F-75005 Paris, France
来源
MONATSHEFTE FUR MATHEMATIK | 2017年 / 184卷 / 04期
关键词
Schrodinger equation; Boltzmann equation; Energy-transport system; Spherical harmonic expansion system; Semiconductors; Interface conditions; Mixed finite elements; DRIFT-DIFFUSION MODEL; PARTIALLY QUANTIZED PARTICLES; MAXIMUM-ENTROPY PRINCIPLE; MACROSCOPIC MODELS; SUBBAND MODEL; SEMICONDUCTORS; APPROXIMATION; SIMULATIONS; EQUATIONS; COMPUTATION;
D O I
10.1007/s00605-016-1008-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider one dimensional coupled classical-quantum models for quantum semiconductor device simulations. The coupling occurs in the space variable: the domain of the device is divided into a region with strong quantum effects (quantum zone) and a region where quantum effects are negligible (classical zone). In the classical zone, transport in diffusive approximation is modeled through diffusive limits of the Boltzmann transport equation. It can lead to an energy-transport model, obtained using a Spherical Harmonic Expansion model as intermediate step. The quantum transport is described by the Schrodinger equation. The aim of this work is to focus on the derivation of boundary conditions at the interface between the classical and quantum regions. Numerical simulations are provided for a resonant tunneling diode with the energy-transport model.
引用
收藏
页码:563 / 596
页数:34
相关论文
共 50 条
  • [21] STABLE SOLITARY WAVES FOR ONE-DIMENSIONAL SCHRODINGER-POISSON SYSTEMS
    Zhang, Guoqing
    Zhang, Weiguo
    Liu, Sanyang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [22] Output Tracking for One-Dimensional Schrodinger Equation subject to Boundary Disturbance
    Liu, Jun-Jun
    Wang, Jun-Min
    Guo, Ya-Ping
    ASIAN JOURNAL OF CONTROL, 2018, 20 (02) : 659 - 668
  • [23] On the spectrum of a class of one-dimensional Schrodinger type operators with generalized potential
    Aigunov, GA
    MATHEMATICAL NOTES, 1997, 62 (3-4) : 513 - 515
  • [24] A macroscopical simulation solution to the one-dimensional stationary state Schrodinger equation
    Liu, JB
    Cai, XP
    ACTA PHYSICA SINICA, 2001, 50 (05) : 820 - 824
  • [25] Eigenvalue excluding for perturbed-periodic one-dimensional Schrodinger operators
    Nagatou, Kaori
    Plum, Michael
    Nakao, Mitsuhiro T.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2138): : 545 - 562
  • [26] A NEW METHOD FOR APPROXIMATE SOLUTION OF ONE-DIMENSIONAL SCHRODINGER-EQUATIONS
    TRAVLOS, SD
    BOEYENS, JCA
    THEORETICA CHIMICA ACTA, 1994, 87 (06): : 453 - 464
  • [27] Weak convergence of spectral shift functions for one-dimensional Schrodinger operators
    Gesztesy, Fritz
    Nichols, Roger
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (14-15) : 1799 - 1838
  • [28] Breathers of Discrete One-dimensional Nonlinear Schrodinger Equations in Inhomogeneous Media
    Ji, Shuguan
    Wang, Zhenhua
    TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (03): : 675 - 690
  • [29] Inverse Scattering Problem for One-Dimensional Schrodinger Equation with Discontinuity Conditions
    Huseynov, H. M.
    Osmanli, J. A.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2013, 9 (03) : 332 - 359
  • [30] Reconstructing the potential for the one-dimensional Schrodinger equation from boundary measurements
    Avdonin, Sergei A.
    Mikhaylov, Victor S.
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2014, 31 (01) : 137 - 150