Formation of TRAPPIST-1 and other compact systems

被引:135
作者
Ormel, Chris W. [1 ]
Liu, Beibei [1 ]
Schoonenberg, Djoeke [1 ]
机构
[1] Univ Amsterdam, Anton Pannekoek Inst, Sci Pk 904, NL-1090 GE Amsterdam, Netherlands
来源
ASTRONOMY & ASTROPHYSICS | 2017年 / 604卷
关键词
planets and satellites: formation; planets and satellites: dynamical evolution and stability; methods: analytical planet-disk interactions; PLANET-DISK INTERACTION; GRAIN-GROWTH; TERRESTRIAL PLANETS; CIRCUMSTELLAR DISKS; SUPER-EARTHS; MASS; MIGRATION; PLANETESIMALS; ORIGIN; I;
D O I
10.1051/0004-6361/201730826
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
TRAPPIST-1 is a nearby 0.08 M-circle times M-star that was recently found to harbor a planetary system of at least seven Earth-sized planets, all within 0.1 au. The configuration confounds theorists as the planets are not easily explained by either in situ or migration models. In this paper we present a scenario for the formation and orbital architecture of the TRAPPIST-1 system. In our model, planet formation starts at the H2O iceline, where pebble-sized particles whose origin is the outer disk accumulate to trigger streaming instabilities. After their formation, planetary embryos quickly mature by pebble accretion. Planet growth stalls at Earth masses, where the planet's gravitational feedback on the disk keeps pebbles at bay. Planets are transported by type I migration to the inner disk, where they stall at the magnetospheric cavity and end up in mean motion resonances. During disk dispersal, the cavity radius expands and the innermost planets escape resonance. We argue that the model outlined here can also be applied to other compact systems and that the many close-in super-Earth systems are a scaled-up version of TRAPPIST-1. We also hypothesize that few close-in compact systems harbor giant planets at large distances, since they would have stopped the pebble flux from the outer disk.
引用
收藏
页数:8
相关论文
共 78 条
[1]   DIRECT IMAGING OF THE WATER SNOW LINE AT THE TIME OF PLANET FORMATION USING TWO ALMA CONTINUUM BANDS [J].
Banzatti, A. ;
Pinilla, P. ;
Ricci, L. ;
Pontoppidan, K. M. ;
Birnstiel, T. ;
Ciesla, F. .
ASTROPHYSICAL JOURNAL LETTERS, 2015, 815 (01)
[2]   DISSIPATIVE DIVERGENCE OF RESONANT ORBITS [J].
Batygin, Konstantin ;
Morbidelli, Alessandro .
ASTRONOMICAL JOURNAL, 2013, 145 (01)
[3]   Planet heating prevents inward migration of planetary cores [J].
Benitez-Llambay, Pablo ;
Masset, Frederic ;
Koenigsberger, Gloria ;
Szulagyi, Judit .
NATURE, 2015, 520 (7545) :63-U127
[4]   Can grain growth explain transition disks? [J].
Birnstiel, T. ;
Andrews, S. M. ;
Ercolano, B. .
ASTRONOMY & ASTROPHYSICS, 2012, 544
[5]   Gas- and dust evolution in protoplanetary disks [J].
Birnstiel, T. ;
Dullemond, C. P. ;
Brauer, F. .
ASTRONOMY & ASTROPHYSICS, 2010, 513
[6]   Water loss from terrestrial planets orbiting ultracool dwarfs: implications for the planets of TRAPPIST-1 [J].
Bolmont, E. ;
Selsis, F. ;
Owen, J. E. ;
Ribas, I. ;
Raymond, S. N. ;
Leconte, J. ;
Gillon, M. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 464 (03) :3728-3741
[7]   Reconnaissance of the TRAPPIST-1 exoplanet system in the Lyman-α line [J].
Bourrier, V. ;
Ehrenreich, D. ;
Wheatley, P. J. ;
Bolmont, E. ;
Gillon, M. ;
de Wit, J. ;
Burgasser, A. J. ;
Jehin, E. ;
Queloz, D. ;
Triaud, A. H. M. J. .
ASTRONOMY & ASTROPHYSICS, 2017, 599
[8]   How to form planetesimals from mm-sized chondrules and chondrule aggregates [J].
Carrera, Daniel ;
Johansen, Anders ;
Davies, Melvyn B. .
ASTRONOMY & ASTROPHYSICS, 2015, 579
[9]   INSIDE-OUT PLANET FORMATION [J].
Chatterjee, Sourav ;
Tan, Jonathan C. .
ASTROPHYSICAL JOURNAL, 2014, 780 (01)
[10]   A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c [J].
de Wit, Julien ;
Wakeford, Hannah R. ;
Gillon, Michael ;
Lewis, Nikole K. ;
Valenti, Jeff A. ;
Demory, Brice-Olivier ;
Burgasser, Adam J. ;
Burdanov, Artem ;
Delrez, Laetitia ;
Jehin, Emmanuel ;
Lederer, Susan M. ;
Queloz, Didier ;
Triaud, Amaury H. M. J. ;
Van Grootel, Valerie .
NATURE, 2016, 537 (7618) :69-72