Effects of the doping density of charge-transporting layers on regular and inverted perovskite solar cells: numerical simulations

被引:30
作者
He, Bo [1 ]
Xu, Yinyan [2 ]
Zhu, Jun [2 ]
Zhang, Xingyuan [1 ]
机构
[1] Univ Sci & Technol China, Dept Polymer Sci & Engn, Hefei 230026, Peoples R China
[2] Hefei Univ Technol, Acad Optoelect Technol, Special Display & Imaging Technol Innovat Ctr Anh, Hefei 230009, Peoples R China
关键词
Perovskite solar cells; Charge-transporting layers; Numerical simulation; Doping density; EFFICIENT; WATER; OXIDE; NANOCOMPOSITES;
D O I
10.1007/s42114-021-00343-9
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Organic-inorganic hybrid perovskite has achieved great success in the field of solar cells. The charge-transporting layers (CTLs) play an important role on the performance of perovskite solar cells (PSCs). In order to elucidate the influence of the doping density of CTLs on the current-voltage characteristics and power conversion efficiencies (PCEs) of PSCs, numerical simulation was performed for both n-i-p and p-i-n configurations. The simulated results suggest that the doping density of CTLs must maintain a certain value from the aspect of efficient built-in electric field. The reasonable value of the doping density of CTLs is mainly related to their dielectric constant.
引用
收藏
页码:1146 / 1154
页数:9
相关论文
共 64 条
  • [1] Device engineering of perovskite solar cells to achieve near ideal efficiency
    Agarwal, Sumanshu
    Nair, Pradeep R.
    [J]. APPLIED PHYSICS LETTERS, 2015, 107 (12)
  • [2] Perovskite Solar Cells: Optoelectronic Simulation and Optimization
    An, Yidan
    Shang, Aixue
    Cao, Guoyang
    Wu, Shaolong
    Ma, Dong
    Li, Xiaofeng
    [J]. SOLAR RRL, 2018, 2 (11):
  • [3] Enhanced photocatalytic degradation of cationic dyes under visible light irradiation by CuWO4-RGO nanocomposite
    Babu, M. Jagadeesh
    Botsa, Sathish Mohan
    Rani, S. Jhansi
    Venkateswararao, B.
    Muralikrishna, R.
    [J]. ADVANCED COMPOSITES AND HYBRID MATERIALS, 2020, 3 (02) : 205 - 212
  • [4] Barma S.V., 2020, MAT MANUF, V11, P50, DOI [10.30919/esmm5f1040, DOI 10.30919/ESMM5F1040]
  • [5] Bhorde A., ES Materials Manufacturing, V2021, P43, DOI [DOI 10.30919/ESMM5F1042, 10.30919/esmm5f1042]
  • [6] Brenner TM, 2016, NAT REV MATER, V1, DOI 10.1038/natrevmats.2015.7
  • [7] Modelling polycrystalline semiconductor solar cells
    Burgelman, M
    Nollet, P
    Degrave, S
    [J]. THIN SOLID FILMS, 2000, 361 : 527 - 532
  • [8] Advanced electrical simulation of thin film solar cells
    Burgelman, Marc
    Decock, Koen
    Khelifi, Samira
    Abass, Aimi
    [J]. THIN SOLID FILMS, 2013, 535 : 296 - 301
  • [9] Natural methionine-passivated MAPbI3 perovskite films for efficient and stable solar devices
    Chen, Chaoran
    Hu, Jinlong
    Xu, Zhenhua
    Wang, Zhen
    Wang, Yousheng
    Zeng, Lingxiang
    Liu, Xianhu
    Li, Yang
    Mai, Yaohua
    Guo, Fei
    [J]. ADVANCED COMPOSITES AND HYBRID MATERIALS, 2021, 4 (04) : 1261 - 1269
  • [10] Photoelectrochemical and photocatalytic properties of Fe@ZnSQDs/TiO2 nanocomposites for degradation of different chromophoric organic pollutants in aqueous suspension
    Danish, Mohtaram
    Qamar, M.
    Suliman, M. H.
    Muneer, M.
    [J]. ADVANCED COMPOSITES AND HYBRID MATERIALS, 2020, 3 (04) : 570 - 582