WEIGHTED ESTIMATES FOR ROUGH SINGULAR INTEGRALS WITH APPLICATIONS TO ANGULAR INTEGRABILITY, II

被引:4
|
作者
Liu, Feng [1 ]
Liu, Ronghui [2 ]
Wu, Huoxiong [2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2020年 / 23卷 / 01期
基金
中国国家自然科学基金;
关键词
Singular integral; maximal singular integral; maximal operator; F-beta (Sn-1); mixed radial-angular space; NORM INEQUALITIES; OPERATORS; KERNELS;
D O I
10.7153/mia-2020-23-31
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to studying certain singular integral operators with rough radial kernel h and sphere kernel Omega as well as the corresponding maximal operators along polynomial curves. The authors establish several weighted estimates for such operators by assuming that the kernels h (math)1 and Omega is an element of F-beta (Sn-1), or h is an element of Delta(gamma)(R+) and Omega is an element of W F-beta (Sn-1). Here F-beta (Sn-1) denotes the Grafakos-Stefanov kernel and W F-beta (Sn-1) denotes the variant of Grafakos-Stefanov kernel. As applications, the boundedness of such operators on the mixed radial-angular spaces (L vertical bar x vertical bar L theta q)-L-p(R-n) are obtained. Meanwhile, the corresponding vector-valued versions are also given. Moreover, the bounds are independent of the coefficients of the polynomials in the definition of operators.
引用
收藏
页码:393 / 418
页数:26
相关论文
共 50 条
  • [21] On the mixed radial-angular integrability of Marcinkiewicz integrals with rough kernels
    Liu, Ronghui
    Liu, Feng
    Wu, Huoxiong
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (01) : 241 - 256
  • [22] A note on maximal singular integrals with rough kernels
    Zhang, Xiao
    Liu, Feng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [23] Lp-ESTIMATES FOR THE ROUGH SINGULAR INTEGRALS ASSOCIATED TO SURFACES
    Liu, Honghai
    OSAKA JOURNAL OF MATHEMATICS, 2014, 51 (01) : 225 - 244
  • [24] WEIGHTED LP-BOUNDEDNESS OF SINGULAR INTEGRALS WITH ROUGH KERNEL ASSOCIATED TO SURFACES
    Liu, Ronghui
    Wu, Huoxiong
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (01) : 69 - 90
  • [25] IMPROVED Al - A∞ AND RELATED ESTIMATES FOR COMMUTATORS OF ROUGH SINGULAR INTEGRALS
    Rivera-Rios, Israel P.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2018, 61 (04) : 1069 - 1086
  • [26] Schrodinger type singular integrals: weighted estimates for p=1
    Bongioanni, Bruno
    Cabral, Adrian
    Harboure, Eleonor
    MATHEMATISCHE NACHRICHTEN, 2016, 289 (11-12) : 1341 - 1369
  • [27] ON JOINT ESTIMATES FOR MAXIMAL FUNCTIONS AND SINGULAR INTEGRALS ON WEIGHTED SPACES
    Reguera, Maria Carmen
    Scurry, James
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (05) : 1705 - 1717
  • [28] ON A COUNTEREXAMPLE RELATED TO WEIGHTED WEAK TYPE ESTIMATES FOR SINGULAR INTEGRALS
    Caldarelli, Marcela
    Lerner, Andrei K.
    Ombrosi, Sheldy
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (07) : 3005 - 3012
  • [29] ROUGH SINGULAR INTEGRALS ASSOCIATED TO SUBMANIFOLDS
    Li, Wenjuan
    Yabuta, Kozo
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (04): : 1557 - 1587
  • [30] Rough bilinear singular integrals
    Grafakos, Loukas
    He, Danqing
    Honzik, Petr
    ADVANCES IN MATHEMATICS, 2018, 326 : 54 - 78