WEIGHTED ESTIMATES FOR ROUGH SINGULAR INTEGRALS WITH APPLICATIONS TO ANGULAR INTEGRABILITY, II

被引:4
|
作者
Liu, Feng [1 ]
Liu, Ronghui [2 ]
Wu, Huoxiong [2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2020年 / 23卷 / 01期
基金
中国国家自然科学基金;
关键词
Singular integral; maximal singular integral; maximal operator; F-beta (Sn-1); mixed radial-angular space; NORM INEQUALITIES; OPERATORS; KERNELS;
D O I
10.7153/mia-2020-23-31
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to studying certain singular integral operators with rough radial kernel h and sphere kernel Omega as well as the corresponding maximal operators along polynomial curves. The authors establish several weighted estimates for such operators by assuming that the kernels h (math)1 and Omega is an element of F-beta (Sn-1), or h is an element of Delta(gamma)(R+) and Omega is an element of W F-beta (Sn-1). Here F-beta (Sn-1) denotes the Grafakos-Stefanov kernel and W F-beta (Sn-1) denotes the variant of Grafakos-Stefanov kernel. As applications, the boundedness of such operators on the mixed radial-angular spaces (L vertical bar x vertical bar L theta q)-L-p(R-n) are obtained. Meanwhile, the corresponding vector-valued versions are also given. Moreover, the bounds are independent of the coefficients of the polynomials in the definition of operators.
引用
收藏
页码:393 / 418
页数:26
相关论文
共 50 条
  • [1] WEIGHTED ESTIMATES FOR ROUGH SINGULAR INTEGRALS WITH APPLICATIONS TO ANGULAR INTEGRABILITY
    Liu, Feng
    Fan, Dashan
    PACIFIC JOURNAL OF MATHEMATICS, 2019, 301 (01) : 267 - 295
  • [2] Weighted estimates for Marcinkiewicz integrals with applications to angular integrability
    Liu, Feng
    Zhang, Pu
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (03)
  • [3] Weighted estimates for Marcinkiewicz integrals with applications to angular integrability
    Feng Liu
    Pu Zhang
    Analysis and Mathematical Physics, 2021, 11
  • [4] Weighted Estimates for Rough Maximal Functions with Applications to Angular Integrability
    Liu, Feng
    Xu, Fangfang
    JOURNAL OF FUNCTION SPACES, 2019, 2019
  • [5] WEIGHTED ESTIMATES FOR CERTAIN ROUGH SINGULAR INTEGRALS
    Zhang, Chunjie
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (06) : 1561 - 1576
  • [6] Quantitative weighted estimates for rough homogeneous singular integrals
    Hytonen, Tuomas P.
    Roncal, Luz
    Tapiola, Olli
    ISRAEL JOURNAL OF MATHEMATICS, 2017, 218 (01) : 133 - 164
  • [7] Weighted estimates for rough bilinear singular integrals via sparse domination
    Barron, Alexander
    NEW YORK JOURNAL OF MATHEMATICS, 2017, 23 : 779 - 811
  • [8] Sparse Domination and Weighted Estimates for Rough Bilinear Singular Integrals
    Grafakos, Loukas
    Wang, Zhidan
    Xue, Qingying
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2022, 28 (06)
  • [9] Lp Estimates and Weighted Estimates of Fractional Maximal Rough Singular Integrals on Homogeneous Groups
    Chen, Yanping
    Fan, Zhijie
    Li, Ji
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (11)
  • [10] Uniform weighted estimates for oscillatory singular integrals
    Ding, Yong
    Liu, Honghai
    FORUM MATHEMATICUM, 2012, 24 (02) : 223 - 238