Microbial community variation and its relationship with soil carbon accumulation during long-term oasis formation

被引:12
|
作者
Li, Chenhua [1 ,2 ,3 ]
Li, Yan [1 ,2 ,3 ]
Ma, Jie [1 ,2 ,3 ]
Wang, Yugang [1 ,2 ,3 ]
Wang, Zhifang [4 ]
Liu, Yan [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi 830011, Peoples R China
[2] Chinese Acad Sci, Fukang Stn Desert Ecol, Fukang 831505, Xinjiang, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Xinjiang Acad Agr Sci, Inst Microbiol, Urumqi 830091, Peoples R China
基金
中国国家自然科学基金;
关键词
Desert region; Oasis formation; Soil profile; Microbial community; Carbon accumulation; ORGANIC-MATTER; EXTRACTION METHOD; ENZYME-ACTIVITIES; NITROGEN; BIOMASS; CLASSIFICATION; STOICHIOMETRY; DECOMPOSITION; DIVERSITY; RESPONSES;
D O I
10.1016/j.apsoil.2021.104126
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
The conversion of desert to farmland may change not only surface soils but also deeper soils due to massive irrigation and fertilization. However, limited information exists on the response of microorganisms throughout the soil profile to long-term crop development in desert regions. The shifts in the microbial community were investigated in relation to soil depth (0-2 m) and years of reclamation, as well as their relationship to soil organic carbon (SOC) dynamics in an irrigated arid area of northwest China. Oasis farmlands cultivated for 3, 5, 10, 20, 50, and > 100 years were compared with adjacent deserts. Total phospholipid fatty acids (PLFAs), bacterial PLFAs, and microbial biomass and activity within the whole profile increased from the beginning of farming and peaked at 20 years post-reclamation. Fungal and actinomycete PLFAs decreased in the beginning of reclamation but increased after 10 years and peaked at 20 years. Microbial community composition was dynamic within the first 10 years of reclamation and tended to become stable thereafter. During oasis formation, the carbon to nitrogen ratio of microbial biomass decreased from 9.0-10.5 to 7.2-8.0; the fungi to bacteria ratio decreased from 0.3-0.5 to 0.2-0.3, and the gram-positive to gram-negative bacteria ratio (GP:GN) increased from 0.3-0.4 to 0.4-0.6. Increases in microbial abundance and shifts in community structure were positively correlated with SOC accumulation. Redundancy analysis indicated that microbial changes were closely associated with increased soil moisture and nutrients and decreased salinity and pH. We believe the predominant factor driving microbial community shifts and soil carbon accumulation is the increased input of plant residue due to enhanced water and nitrogen availability after desert reclamation. This study emphasizes the significance of the microbial changes and the close association between increased GP:GN and SOC accumulation during oasis formation, especially in deeper soils (0.6-2.0 m).
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Long-term land use effects on soil microbial community structure and function
    Bissett, Andrew
    Richardson, Alan E.
    Baker, Geoff
    Thrall, Peter H.
    APPLIED SOIL ECOLOGY, 2011, 51 : 66 - 78
  • [32] Long-term and legacy effects of manure application on soil microbial community composition
    Yuting Zhang
    Xiying Hao
    Trevor W. Alexander
    Ben W. Thomas
    Xiaojun Shi
    Newton Z. Lupwayi
    Biology and Fertility of Soils, 2018, 54 : 269 - 283
  • [33] Long-term decomposed straw return positively affects the soil microbial community
    Su, Y.
    Lv, J. L.
    Yu, M.
    Ma, Z. H.
    Xi, H.
    Kou, C. L.
    He, Z. C.
    Shen, A. L.
    JOURNAL OF APPLIED MICROBIOLOGY, 2020, 128 (01) : 138 - 150
  • [34] Long-term reactive nitrogen loading alters soil carbon and microbial community properties in a subalpine forest ecosystem
    Boot, Claudia M.
    Hall, Ed K.
    Denef, Karolien
    Baron, Jill S.
    SOIL BIOLOGY & BIOCHEMISTRY, 2016, 92 : 211 - 220
  • [35] Changes in the microbial community of an arable soil caused by long-term metal contamination
    Abaye, DA
    Lawlor, K
    Hirsch, PR
    Brookes, PC
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2005, 56 (01) : 93 - 102
  • [36] Long-term and legacy effects of manure application on soil microbial community composition
    Zhang, Yuting
    Hao, Xiying
    Alexander, Trevor W.
    Thomas, Ben W.
    Shi, Xiaojun
    Lupwayi, Newton Z.
    BIOLOGY AND FERTILITY OF SOILS, 2018, 54 (02) : 269 - 283
  • [37] Response Characteristics of Soil Microbial Community Under Long-term Film Mulching
    Hu, Zhi-E
    Xiao, Mou-Liang
    Ding, Ji-Na
    Ji, Jian-Hong
    Chen, Jian-Ping
    Ge, Ti-Da
    Lu, Shun-Bao
    Huanjing Kexue/Environmental Science, 2022, 43 (10): : 4745 - 4754
  • [38] Shifts in microbial community and carbon sequestration in farmland soil under long-term conservation tillage and straw returning
    Hao, Minmin
    Hu, Hengyu
    Liu, Zhen
    Dong, Qingling
    Sun, Kai
    Feng, Yupeng
    Li, Geng
    Ning, Tangyuan
    APPLIED SOIL ECOLOGY, 2019, 136 : 43 - 54
  • [39] Long-term changes in soil microbial communities during primary succession
    Cutler, Nick A.
    Chaput, Dominique L.
    van der Gast, Christopher J.
    SOIL BIOLOGY & BIOCHEMISTRY, 2014, 69 : 359 - 370
  • [40] CHANGES OF THE SOIL MICROBIAL BIOMASS LEVEL DURING A LONG-TERM INCUBATION - RELATIONSHIPS WITH CARBON AND NITROGEN MINERALIZATION
    NICOLARDOT, B
    REVUE D ECOLOGIE ET DE BIOLOGIE DU SOL, 1988, 25 (03): : 287 - 304