Microbial community variation and its relationship with soil carbon accumulation during long-term oasis formation

被引:12
|
作者
Li, Chenhua [1 ,2 ,3 ]
Li, Yan [1 ,2 ,3 ]
Ma, Jie [1 ,2 ,3 ]
Wang, Yugang [1 ,2 ,3 ]
Wang, Zhifang [4 ]
Liu, Yan [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi 830011, Peoples R China
[2] Chinese Acad Sci, Fukang Stn Desert Ecol, Fukang 831505, Xinjiang, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Xinjiang Acad Agr Sci, Inst Microbiol, Urumqi 830091, Peoples R China
基金
中国国家自然科学基金;
关键词
Desert region; Oasis formation; Soil profile; Microbial community; Carbon accumulation; ORGANIC-MATTER; EXTRACTION METHOD; ENZYME-ACTIVITIES; NITROGEN; BIOMASS; CLASSIFICATION; STOICHIOMETRY; DECOMPOSITION; DIVERSITY; RESPONSES;
D O I
10.1016/j.apsoil.2021.104126
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
The conversion of desert to farmland may change not only surface soils but also deeper soils due to massive irrigation and fertilization. However, limited information exists on the response of microorganisms throughout the soil profile to long-term crop development in desert regions. The shifts in the microbial community were investigated in relation to soil depth (0-2 m) and years of reclamation, as well as their relationship to soil organic carbon (SOC) dynamics in an irrigated arid area of northwest China. Oasis farmlands cultivated for 3, 5, 10, 20, 50, and > 100 years were compared with adjacent deserts. Total phospholipid fatty acids (PLFAs), bacterial PLFAs, and microbial biomass and activity within the whole profile increased from the beginning of farming and peaked at 20 years post-reclamation. Fungal and actinomycete PLFAs decreased in the beginning of reclamation but increased after 10 years and peaked at 20 years. Microbial community composition was dynamic within the first 10 years of reclamation and tended to become stable thereafter. During oasis formation, the carbon to nitrogen ratio of microbial biomass decreased from 9.0-10.5 to 7.2-8.0; the fungi to bacteria ratio decreased from 0.3-0.5 to 0.2-0.3, and the gram-positive to gram-negative bacteria ratio (GP:GN) increased from 0.3-0.4 to 0.4-0.6. Increases in microbial abundance and shifts in community structure were positively correlated with SOC accumulation. Redundancy analysis indicated that microbial changes were closely associated with increased soil moisture and nutrients and decreased salinity and pH. We believe the predominant factor driving microbial community shifts and soil carbon accumulation is the increased input of plant residue due to enhanced water and nitrogen availability after desert reclamation. This study emphasizes the significance of the microbial changes and the close association between increased GP:GN and SOC accumulation during oasis formation, especially in deeper soils (0.6-2.0 m).
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Vertical and horizontal shifts in the microbial community structure of paddy soil under long-term fertilization regimes
    Liu, Qiong
    Atere, Cornelius Talade
    Zhu, Zhenke
    Shahbaz, Muhammad
    Wei, Xiaomeng
    Pausch, Johanna
    Wu, Jinshui
    Ge, Tida
    APPLIED SOIL ECOLOGY, 2022, 169
  • [22] Temporal variation of soil friedelin and microbial community under different land uses in a long-term agroecosystem
    Dong, Hong-Yun
    Kong, Chui-Hua
    Wang, Peng
    Huang, Qi-Liang
    SOIL BIOLOGY & BIOCHEMISTRY, 2014, 69 : 275 - 281
  • [23] Soil microbial community composition closely associates with specific enzyme activities and soil carbon chemistry in a long-term nitrogen fertilized grassland
    Li, Yue
    Nie, Cheng
    Liu, Yinghui
    Du, Wei
    He, Pei
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 654 : 264 - 274
  • [24] Enhanced decomposition of stable soil organic carbon and microbial catabolic potentials by long-term field warming
    Feng, Wenting
    Liang, Junyi
    Hale, Lauren E.
    Jung, Chang Gyo
    Chen, Ji
    Zhou, Jizhong
    Xu, Minggang
    Yuan, Mengting
    Wu, Liyou
    Bracho, Rosvel
    Pegoraro, Elaine
    Schuur, Edward A. G.
    Luo, Yiqi
    GLOBAL CHANGE BIOLOGY, 2017, 23 (11) : 4765 - 4776
  • [25] Long-term effects of agricultural production systems on structure and function of the soil microbial community
    Chen, Xueli
    Henriksen, Trond Maukon
    Svensson, Kine
    Korsaeth, Audun
    APPLIED SOIL ECOLOGY, 2020, 147
  • [26] The accumulation of microbial necromass carbon from litter to mineral soil and its contribution to soil organic carbon sequestration
    Wang, Baorong
    Liang, Chao
    Yao, Hongjia
    Yang, Env
    An, Shaoshan
    CATENA, 2021, 207
  • [27] Nitrogen addition mediates the effect of soil microbial diversity on microbial carbon use efficiency under long-term tillage practices
    Zhang, Mengni
    Li, Shengping
    Wu, Xueping
    Zheng, Fengjun
    Song, Xiaojun
    Lu, Jinjing
    Liu, Xiaotong
    Wang, Bisheng
    Abdelrhmana, Ahmed Ali
    Degre, Aurore
    LAND DEGRADATION & DEVELOPMENT, 2022, 33 (13) : 2258 - 2275
  • [28] Microbial mediation of soil organic carbon fractions and its feedback to long-term climate change
    Sima, Xinqi
    Fang, Rui
    Yu, Zhenhua
    Li, Yansheng
    Hu, Xiaojing
    Gu, Haidong
    Tang, Caixian
    Liu, Judong
    Liu, Junjie
    Liu, Xiaobing
    Wang, Guanghua
    Franks, Ashley
    Yin, Kuide
    Jin, Jian
    PLANT AND SOIL, 2025,
  • [29] Long-term nitrogen fertilization indirectly affects soil fungi community structure by changing soil and pruned litter in a subtropical tea (Camellia sinensis L.) plantation in China
    Yang, Xiangde
    Ma, Lifeng
    Ji, Lingfei
    Shi, Yuanzhi
    Yi, Xiaoyun
    Yang, Qinglin
    Ni, Kang
    Ruan, Jianyun
    PLANT AND SOIL, 2019, 444 (1-2) : 409 - 426
  • [30] Long-term soil warming decreases soil microbial necromass carbon by adversely affecting its production and decomposition
    Liu, Xiaofei
    Tian, Ye
    Heinzle, Jakob
    Salas, Erika
    Kwatcho-Kengdo, Steve
    Borken, Werner
    Schindlbacher, Andreas
    Wanek, Wolfgang
    GLOBAL CHANGE BIOLOGY, 2024, 30 (06)