Medical therapy and imaging fixed-field alternating-gradient accelerator with realistic magnets

被引:0
作者
Tygier, S. [1 ,3 ]
Marinov, K. B. [2 ,3 ]
Appleby, R. B. [1 ,3 ]
Clarke, J. A. [2 ,3 ]
Garland, J. M. [1 ,3 ]
Owen, H. L. [1 ,3 ]
Shepherd, B. J. A. [2 ,3 ]
机构
[1] Univ Manchester, Oxford Rd, Manchester M13 9PL, Lancs, England
[2] ASTeC, STFC Daresbury Lab, Daresbury WA4 4AD, England
[3] Cockcroft Inst, Daresbury WA4 4AD, England
关键词
PROTON THERAPY; UNCERTAINTIES; RADIOTHERAPY; DESIGN; IMRT;
D O I
10.1103/PhysRevAccelBeams.20.104702
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
NORMA is a design for a normal-conducting racetrack fixed-field alternating-gradient accelerator for protons from 50 to 350 MeV. In this article we show the development from an idealized lattice to a design implemented with field maps from rigorous two-dimensional (2D) and three-dimensional (3D) FEM magnet modeling. We show that whilst the fields from a 2D model may reproduce the idealized field to a close approximation, adjustments must be made to the lattice to account for differences brought about by the 3D model and fringe fields and full 3D models. Implementing these lattice corrections we recover the required properties of small tune shift with energy and a sufficiently large dynamic aperture. The main result is an iterative design method to produce the first realistic design for a proton therapy accelerator that can rapidly deliver protons for both treatment and for imaging at up to 350 MeV. The first iteration is performed explicitly and described in detail in the text.
引用
收藏
页数:16
相关论文
共 28 条
[1]   Principle design of a protontherapy, rapid-cycling, variable energy spiral FFAG [J].
Antoine, S. ;
Autin, B. ;
Beeckman, W. ;
Collot, J. ;
Conjat, M. ;
Forest, F. ;
Fourrier, J. ;
Froidefond, E. ;
Lancelot, J. L. ;
Mandrillon, J. ;
Mandrillon, P. ;
Meot, F. ;
Mori, Y. ;
Neuveglise, D. ;
Ohmori, C. ;
Pasternak, J. ;
Planche, T. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2009, 602 (02) :293-305
[2]   IMRT: a review and preview [J].
Bortfeld, Thomas .
PHYSICS IN MEDICINE AND BIOLOGY, 2006, 51 (13) :R363-R379
[3]  
Charlie Ma C.-M., 2012, Proton and Carbon Ion Therapy
[4]   Design And Construction Of The 1st Proton CT Scanner [J].
Coutrakon, G. ;
Bashkirov, V. ;
Hurley, F. ;
Johnson, R. ;
Rykalin, V. ;
Sadrozinski, H. ;
Schulte, R. .
APPLICATION OF ACCELERATORS IN RESEARCH AND INDUSTRY, 2013, 1525 :327-331
[5]   Charged particles in radiation oncology [J].
Durante, Marco ;
Loeffler, Jay S. .
NATURE REVIEWS CLINICAL ONCOLOGY, 2010, 7 (01) :37-43
[6]  
Enge H. A., 1964, Rev. Sci. Instrum., V35, P278
[7]   Target coverage for head and neck cancers treated with IMRT: Review of clinical experiences [J].
Garden, AS ;
Morrison, WH ;
Rosenthal, DI ;
Chao, KSC ;
Ang, KK .
SEMINARS IN RADIATION ONCOLOGY, 2004, 14 (02) :103-109
[8]   Normal-conducting scaling fixed field alternating gradient accelerator for proton therapy [J].
Garland, J. M. ;
Appleby, R. B. ;
Owen, H. ;
Tygier, S. .
PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2015, 18 (09)
[9]   In vivo proton range verification: a review [J].
Knopf, Antje-Christin ;
Lomax, Antony .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (15) :131-160
[10]   Intensity modulated proton therapy and its sensitivity to treatment uncertainties 1: the potential effects of calculational uncertainties [J].
Lomax, A. J. .
PHYSICS IN MEDICINE AND BIOLOGY, 2008, 53 (04) :1027-1042