Strong laws for weighted sums of random variables satisfying generalized Rosenthal type inequalities

被引:12
作者
Yi, Yanchun [1 ]
Chen, Pingyan [2 ]
Sung, Soo Hak [3 ]
机构
[1] Hengyang Normal Univ, Coll Math & Stat, Hengyang, Peoples R China
[2] Jinan Univ, Dept Math, Guangzhou, Peoples R China
[3] Pai Chai Univ, Dept Appl Math, Daejeon, South Korea
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Strong law of large numbers; Weighted sum; Widely orthant dependent random variable;
D O I
10.1186/s13660-020-02311-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let 1 < p < 2 and 0 < a,,8 < oo with 1 /p = 1/a + 7,8. Let {Xn, n > 1} be a sequence of random variables satisfying a generalized Rosenthal type inequality and stochastically dominated by a random variable X with EIX1,8 < oo. Let {a k,1 < k < n, n > 1} be an array of constants satisfying Ekn_ ankl a = 0(n). Marcinkiewicz-Zygmund type strong laws for weighted sums of the random variables are established. Our results generalize or improve the corresponding ones of Wu (J. Inequal. Appl. 2010:383805, 2010), Huang et al. (J. Math. Inequal. 8:465-473, 2014), and Wu et al. (Test 27:379-406, 2018).
引用
收藏
页数:8
相关论文
共 13 条
[1]  
Asadian N, 2006, JIRSS-J IRAN STAT SO, V5, P69
[2]   Marcinkiewicz strong laws for linear statistics [J].
Bai, ZD ;
Cheng, PE .
STATISTICS & PROBABILITY LETTERS, 2000, 46 (02) :105-112
[3]   A Spitzer-type law of large numbers for widely orthant dependent random variables [J].
Chen, Pingyan ;
Sung, Soo Hak .
STATISTICS & PROBABILITY LETTERS, 2019, 154
[4]   A strong law for weighted sums of IID random variables [J].
Cuzick, J .
JOURNAL OF THEORETICAL PROBABILITY, 1995, 8 (03) :625-641
[5]   ON THE STRONG LAW OF LARGE NUMBERS FOR WEIGHTED SUMS OF φ-MIXING RANDOM VARIABLES [J].
Huang, Haiwu ;
Wang, Dingcheng ;
Peng, Jiangyan .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (03) :465-473
[6]   Limiting behavior of weighted sums of i.i.d. random variables [J].
Pingyan, Chen ;
Shixin, Gan .
STATISTICS & PROBABILITY LETTERS, 2007, 77 (16) :1589-1599
[8]   A comparison theorem on moment inequalities between negatively associated and independent random variables [J].
Shao, QM .
JOURNAL OF THEORETICAL PROBABILITY, 2000, 13 (02) :343-356
[9]   Maximal inequalities and an invariance principle for a class of weakly dependent random variables [J].
Utev, S ;
Peligrad, M .
JOURNAL OF THEORETICAL PROBABILITY, 2003, 16 (01) :101-115
[10]   Uniform Asymptotics for the Finite-Time Ruin Probability of a Dependent Risk Model with a Constant Interest Rate [J].
Wang, Kaiyong ;
Wang, Yuebao ;
Gao, Qingwu .
METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2013, 15 (01) :109-124