Diffusion on asymmetric fractal networks

被引:0
作者
Haynes, Christophe P. [1 ]
Roberts, Anthony P. [1 ]
机构
[1] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
来源
PHYSICAL REVIEW E | 2010年 / 82卷 / 06期
关键词
RANDOM-WALKS; 1ST-PASSAGE TIMES; GRAPHS;
D O I
10.1103/PhysRevE.82.061121
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We derive a renormalization method to calculate the spectral dimension (d) over bar of deterministic self-similar networks with arbitrary base units and branching constants. The generality of the method allows the affect of a multitude of microstructural details to be quantitatively investigated. In addition to providing models for physical networks, the results allow precise tests of theories of diffusive transport. For example, the properties of a class of nonrecurrent trees ((d) over bar >2)with asymmetric elements and branching violate the Alexander-Orbach scaling law.
引用
收藏
页数:5
相关论文
共 21 条
[21]  
Woess W., 2000, RANDOM WALKS INFINIT, V138