Effective thermal properties of an aluminum matrix composite with coated diamond inhomogeneities

被引:16
|
作者
Anisimova, Maria [1 ]
Knyazeva, Anna [1 ]
Sevostianov, Igor [2 ]
机构
[1] Natl Res Tomsk Polytech Univ, 30 Lenina Ave, Tomsk 634050, Russia
[2] New Mexico State Univ, Dept Mech & Aerosp Engn, POB 30001, Las Cruces, NM 88003 USA
关键词
Thermal conductivity; Thermal expansion coefficient; Maxwell homogenization scheme; Metal-diamond composite; Cross property connections; MAXWELL HOMOGENIZATION SCHEME; CONDUCTIVE PROPERTIES; PHYSICAL-PROPERTIES; MICROSTRUCTURE; INTERPHASE; INTERFACE; INFILTRATION; INCLUSION; EXPANSION; PARTICLE;
D O I
10.1016/j.ijengsci.2016.05.010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The paper focuses on the calculation of the effective thermal properties of aluminum matrix composites containing diamond particles. We propose a model explaining non monotonic behavior of the overall thermal conductivity (TC) and monotonic behavior of the thermal expansion coefficient (CTE) at high volume fraction of diamond particles. The model also accounts for the effect of particle coatings that increases the interfacial bonding between the diamond particles and metal matrix. Effect of the coating is modeled using differential method of replacing an inhomogeneous inclusion by an equivalent homogeneous one. The effective properties are calculated using Maxwell homogenization scheme and compared with experimental data. We also establish and verify experimentally cross property connection between thermal conductivity and thermal expansion coefficient for Al\diamond composites. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:142 / 154
页数:13
相关论文
共 50 条
  • [21] Thermal conductivity of TiC-coated diamond/Al composites
    Xue, C.
    Yu, J. K.
    EMERGING MATERIALS RESEARCH, 2012, 1 (02) : 99 - 105
  • [22] Multi-scale modeling of thermal conductivity of SiC-reinforced aluminum metal matrix composite
    Dong, Xiangyang
    Shin, Yung C.
    JOURNAL OF COMPOSITE MATERIALS, 2017, 51 (28) : 3941 - 3953
  • [23] Microstructure and thermal properties of copper matrix composites reinforced with titanium-coated graphite fibers
    Zhang, Hao-Ming
    He, Xin-Bo
    Qu, Xuan-Hui
    Liu, Qian
    Shen, Xiao-Yu
    RARE METALS, 2013, 32 (01) : 75 - 80
  • [24] Structure and properties of modified compocast microsilica reinforced aluminum matrix composite
    Manu, K. M. Sree
    Sreeraj, K.
    Rajan, T. P. D.
    Shereema, R. M.
    Pai, B. C.
    Arun, B.
    MATERIALS & DESIGN, 2015, 88 : 294 - 301
  • [25] Elastic interaction between ellipsoidal inhomogeneities with imperfect interface and effective stiffness of particulate composite
    Kushch, Volodymyr I.
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2019, 142 : 94 - 105
  • [26] Evaluation of mechanical and thermal properties of bilayer graphene reinforced aluminum matrix composite produced by hot accumulative roll bonding
    Tiwari, Jitendar Kumar
    Mandal, Ajay
    Rudra, Amitava
    Mukherjee, Devesh
    Sathish, N.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 801 (49-59) : 49 - 59
  • [27] Effects of diamond particle size on the formation of copper matrix and the thermal transport properties in electrodeposited copper-diamond composite materials
    Cho, Hai Jun
    Yan, Dong
    Tam, Jason
    Erb, Uwe
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 791 : 1128 - 1137
  • [28] Evolution of thermo-physical properties of diamond/Cu composite materials under thermal shock load
    Guo, Hong
    Bai, Zhi-Hui
    Zhang, Xi-Min
    Yin, Fa-Zhang
    Jia, Cheng-Chang
    Han, Yuan-Yuan
    RARE METALS, 2014, 33 (02) : 185 - 190
  • [29] Microstructure and thermal properties of nickel-coated carbon fibers/aluminum composites
    Yi, Li-Fu
    Yamamoto, Takashi
    Onda, Tetsuhiko
    Chen, Zhong-Chun
    JOURNAL OF COMPOSITE MATERIALS, 2020, 54 (19) : 2539 - 2548
  • [30] Effect of diamond particle type on the thermal properties of diamond/copper composites
    Ge, Qingzhu
    Yan, Meng
    Jiang, Yang
    Wang, Yonghong
    Liu, Junwu
    KOVOVE MATERIALY-METALLIC MATERIALS, 2022, 60 (06): : 363 - 372