Eigenvalues of rank-one updated matrices with some applications

被引:121
作者
Ding, Jiu [1 ]
Zhou, Aihui
机构
[1] Univ So Mississippi, Dept Math, Hattiesburg, MS 39406 USA
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
rank-one update; determinant; spectrum;
D O I
10.1016/j.aml.2006.11.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a spectral perturbation theorem for rank-one updated matrices of special structure. Two applications of the result are given to illustrate the usefulness of the theorem. One is for the spectrum of the Google matrix and the other is for the algebraic simplicity of the maximal eigenvalue of a positive matrix. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1223 / 1226
页数:4
相关论文
共 9 条
  • [1] [Anonymous], 2003, 2 EIGENVALUE GOOGLE
  • [2] Bapat RB., 1997, NONNEGATIVE MATRICES
  • [3] The anatomy of a large-scale hypertextual Web search engine
    Brin, S
    Page, L
    [J]. COMPUTER NETWORKS AND ISDN SYSTEMS, 1998, 30 (1-7): : 107 - 117
  • [4] ELDEN L, 2003, LITHMATR0401
  • [5] Adaptive methods for the computation of PageRank
    Kamvar, S
    Haveliwala, T
    Golub, G
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 386 : 51 - 65
  • [6] Langville A., 2004, INTERNET MATH, V1, P335, DOI DOI 10.1080/15427951.2004.10129091
  • [7] A survey of eigenvector methods for Web information retrieval
    Langville, AN
    Meyer, CD
    [J]. SIAM REVIEW, 2005, 47 (01) : 135 - 161
  • [8] Minc H., 1988, Nonnegative Matrices
  • [9] Motwani R., 1998, TECHNICAL REPORT