Evolution and Symmetry of Multipartite Entanglement

被引:38
作者
Gour, Gilad [1 ,2 ]
机构
[1] Univ Calgary, Inst Quantum Informat Sci, Calgary, AB T2N 1N4, Canada
[2] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
QUANTUM ENTANGLEMENT;
D O I
10.1103/PhysRevLett.105.190504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discover a simple factorization law describing how multipartite entanglement of a composite quantum system evolves when one of the subsystems undergoes an arbitrary physical process. This multipartite entanglement decay is determined uniquely by a single factor we call the entanglement resilience factor. Since the entanglement resilience factor is a function of the quantum channel alone, we find that multipartite entanglement evolves in exactly the same way as bipartite (two qudits) entanglement. For the two qubits case, our factorization law reduces to the main result of [T. Konrad, Nature Phys. 4, 99 (2008)]. In addition, for a permutation P, we provide an operational definition of P asymmetry of entanglement, and find the conditions when a permuted version of a state can be achieved by local means.
引用
收藏
页数:4
相关论文
共 20 条
[1]   Canonical decompositions of n-qubit quantum computations and concurrence [J].
Bullock, SS ;
Brennen, GK .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (06) :2447-2467
[2]   Distributed entanglement [J].
Coffman, V ;
Kundu, J ;
Wootters, WK .
PHYSICAL REVIEW A, 2000, 61 (05) :5
[3]   On polynomial invariants of several qubits [J].
Dokovic, D. Z. ;
Osterloh, A. .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (03)
[4]   Three qubits can be entangled in two inequivalent ways [J].
Dur, W. ;
Vidal, G. ;
Cirac, J.I. .
Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (06) :062314-062311
[5]   Mixed-state entanglement of assistance and the generalized concurrence [J].
Gour, G .
PHYSICAL REVIEW A, 2005, 72 (04)
[6]   Family of concurrence monotones and its applications [J].
Gour, G .
PHYSICAL REVIEW A, 2005, 71 (01)
[7]   Remote preparation and distribution of bipartite entangled states [J].
Gour, G ;
Sanders, BC .
PHYSICAL REVIEW LETTERS, 2004, 93 (26)
[8]  
GOUR G, ARXIV10060036
[9]  
Horodecki K, ARXIVQUANTPH0512224
[10]   Quantum entanglement [J].
Horodecki, Ryszard ;
Horodecki, Pawel ;
Horodecki, Michal ;
Horodecki, Karol .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :865-942