A Numerical Glimpse at Some Non-standard Solutions to Compressible Euler Equations

被引:2
作者
Chiodaroli, Elisabetta [1 ]
Gosse, Laurent [2 ]
机构
[1] EPFL Lausanne, Stn 8, CH-1015 Lausanne, Switzerland
[2] CNR, IAC, Via Taurini 19, I-00185 Rome, Italy
来源
INNOVATIVE ALGORITHMS AND ANALYSIS | 2017年 / 16卷
关键词
NONLINEAR HYPERBOLIC SYSTEMS; SHALLOW-WATER EQUATIONS; ENTROPY SOLUTIONS; CONSERVATION-LAWS; WELL-POSEDNESS; WEAK SOLUTIONS; SCHEMES; COUNTEREXAMPLE; CONVERGENCE; GAS;
D O I
10.1007/978-3-319-49262-9_4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this note we review and recast some recent results on the existence of non-standard solutions to the compressible Euler equations as to make possible a preliminary numerical investigation. In particular, we are interested in studying numerically the forward in time evolution of some Lipschitz initial data which allow for non-standard solutions ("colliding data"). Numerical results indicate appearance of oscillations after the first break-up time along with a qualitative behavior seemingly compatible with relevant properties of non-standard solutions.
引用
收藏
页码:111 / 140
页数:30
相关论文
共 38 条
[1]  
Acharya A., 2016, ARXIV160503058
[2]  
[Anonymous], 2015, BCAM SPRINGER BRIEFS
[3]   Discrete kinetic schemes for multidimensional systems of conservation laws [J].
Aregba-Driollet, D ;
Natalini, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (06) :1973-2004
[4]   Vanishing viscosity solutions of nonlinear hyperbolic systems [J].
Bianchini, S ;
Bressan, A .
ANNALS OF MATHEMATICS, 2005, 161 (01) :223-342
[5]  
Blondin JM, 1997, NEW ASTRON, V1, P235
[6]   A kinetic formulation for multi-branch entropy solutions of scalar conservation laws [J].
Brenier, Y ;
Corrias, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (02) :169-190
[7]  
Chiodaroli E., 2015, ARXIV151103114
[8]   On the weak solutions to the equations of a compressible heat conducting gas [J].
Chiodaroli, Elisabetta ;
Feireisl, Eduard ;
Kreml, Ondrej .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (01) :225-243
[9]   Global Ill-Posedness of the Isentropic System of Gas Dynamics [J].
Chiodaroli, Elisabetta ;
De Lellis, Camillo ;
Kreml, Ondrej .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (07) :1157-1190
[10]   On the Energy Dissipation Rate of Solutions to the Compressible Isentropic Euler System [J].
Chiodaroli, Elisabetta ;
Kreml, Ondrej .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 214 (03) :1019-1049