Algebraic classification of the curvature of three-dimensional manifolds with indefinite metric

被引:7
|
作者
del Castillo, GFT
Gómez-Ceballos, LF
机构
[1] Univ Autonoma Puebla, Inst Ciencias, Dept Fis Matemat, Puebla 72001, Mexico
[2] Univ Autonoma Puebla, Fac Ciencias Fis & Matemat, Puebla 72001, Mexico
关键词
D O I
10.1063/1.1592611
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The curvature of a three-dimensional Riemannian manifold with Lorentzian signature is algebraically classified using the fact that the spinor equivalent of the traceless part of the Ricci tensor is a totally symmetric four-index spinor. Following G. S. Hall and M. S. Capocci [J. Math. Phys. 40, 1466 (1999)] it is shown that at each point of the manifold there exists four, possibly complex, null vectors which are analogous to the Debever-Penrose vectors and also satisfy the condition R(ab)l(a)l(b)=0. It is also shown that a similar conclusion holds for the Cotton-York tensor. (C) 2003 American Institute of Physics.
引用
收藏
页码:4374 / 4380
页数:7
相关论文
共 50 条