Segmentation of brain tumour in 3D Intraoperative Ultrasound imaging

被引:3
|
作者
Angel-Raya, Erick [1 ]
Chalopin, Claire [2 ]
Avina-Cervantes, Juan Gabriel [1 ]
Cruz-Aceves, Ivan [3 ]
Wein, Wolfgang [4 ]
Lindner, Dirk [5 ]
机构
[1] Univ Guanajuato, Engn Div DICIS, Dept Elect Engn, Campus Irapuato Salamanca, Salamanca, Mexico
[2] Univ Leipzig, Innovat Ctr Comp Assisted Surg ICCAS, Leipzig, Germany
[3] CONACYT, Ctr Invest Matemat CIMAT, Guanajuato, Mexico
[4] ImFusion GmbH, Munich, Germany
[5] Univ Hosp Leipzig, Dept Neurosurg, Leipzig, Germany
关键词
brain tumour extraction; image registration; ultrasound imaging; CONTRAST-ENHANCED ULTRASOUND; REGISTRATION; IDENTIFICATION; MRI;
D O I
10.1002/rcs.2320
中图分类号
R61 [外科手术学];
学科分类号
摘要
Background Intraoperative ultrasound (iUS), using a navigation system and preoperative magnetic resonance imaging (pMRI), supports the surgeon intraoperatively in identifying tumour margins. Therefore, visual tumour enhancement can be supported by efficient segmentation methods. Methods A semi-automatic and two registration-based segmentation methods are evaluated to extract brain tumours from 3D-iUS data. The registration-based methods estimated the brain deformation after craniotomy based on pMRI and 3D-iUS data. Both approaches use the normalised gradient field and linear correlation of linear combinations metrics. Proposed methods were evaluated on 66 B-mode and contrast-mode 3D-iUS data with metastasis and glioblastoma. Results The semi-automatic segmentation achieved superior results with dice similarity index (DSI) values between [85.34, 86.79]% and contour mean distance values between [1.05, 1.11] mm for both modalities and tumour classes. Conclusions Better segmentation results were obtained for metastasis detection than glioblastoma, preferring 3D-intraoperative B-mode over 3D-intraoperative contrast-mode.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] 3D segmentation of brain tumour
    Shirwaikar, Rudresh Deepak
    Ramesh, Kruthika
    Faisal, Abu Mohammed
    Jeshwanth, M.
    Raghav, Aditya
    INTERNATIONAL JOURNAL OF ENGINEERING SYSTEMS MODELLING AND SIMULATION, 2024, 15 (02) : 76 - 83
  • [2] Evaluation of a semi-automatic segmentation algorithm in 3D intraoperative ultrasound brain angiography
    Chalopin, Claire
    Krissian, Karl
    Meixensberger, Juergen
    Muens, Andrea
    Arlt, Felix
    Lindner, Dirk
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2013, 58 (03): : 293 - 302
  • [3] Brain tumor enhancement revealed by 3D intraoperative ultrasound imaging in a navigation system
    Chalopin, C.
    Lindenberg, R.
    Arlt, F.
    Muens, A.
    Meixensberger, J.
    Lindner, D.
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2012, 57 : 468 - 471
  • [4] 3D U-Net for Brain Tumour Segmentation
    Mehta, Raghav
    Arbel, Tal
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 254 - 266
  • [5] Automatic segmentation of brain tumor in intraoperative ultrasound images using 3D U-Net
    Carton, Francois-Xavier
    Chabanas, Matthieu
    Munkvold, Bodil K. R.
    Reinertsen, Ingerid
    Noble, Jack H.
    MEDICAL IMAGING 2020: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2021, 11315
  • [6] Patient-specific model-based segmentation of brain tumors in 3D intraoperative ultrasound images
    Elisee Ilunga-Mbuyamba
    Juan Gabriel Avina-Cervantes
    Dirk Lindner
    Felix Arlt
    Jean Fulbert Ituna-Yudonago
    Claire Chalopin
    International Journal of Computer Assisted Radiology and Surgery, 2018, 13 : 331 - 342
  • [7] Patient-specific model-based segmentation of brain tumors in 3D intraoperative ultrasound images
    Ilunga-Mbuyamba, Elisee
    Gabriel Avina-Cervantes, Juan
    Lindner, Dirk
    Arlt, Felix
    Fulbert Ituna-Yudonago, Jean
    Chalopin, Claire
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2018, 13 (03) : 331 - 342
  • [8] Real time 3D ultrasound imaging of the brain
    Ivancevich, NM
    Chu, KK
    Dahl, JD
    Light, ED
    Trahey, GE
    Idriss, SF
    Wolf, PD
    Dixon-Tulloch, E
    Smith, SW
    2004 IEEE Ultrasonics Symposium, Vols 1-3, 2004, : 110 - 113
  • [9] 3D ultrasound as sparse data for intraoperative brain deformation model
    Lunn, KE
    Hartov, A
    Kennedy, FE
    Miga, MI
    Roberts, DW
    Platenik, LA
    Paulsen, KD
    MEDICAL IMAGING 2001: ULTRASONIC IMAGING AND SIGNAL PROCESSING, 2001, 4325 : 326 - 332
  • [10] Segmentation of Brain Tumor Resections in Intraoperative 3D Ultrasound Images Using a Semisupervised Cross nnSU-Net
    Li, Yuhua
    Jiang, Shan
    Yang, Zhiyong
    Wang, Liwen
    Liu, Zifeng
    Zhou, Zeyang
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2025, 35 (01)