pH and ultrasound dual-responsive drug delivery system based on PEG-folate-functionalized Iron-based metal-organic framework for targeted doxorubicin delivery

被引:33
|
作者
Ahmed, Ahmed [1 ]
Karami, Abdollah [1 ]
Sabouni, Rana [1 ]
Husseini, Ghaleb A. [1 ]
Paul, Vinod [1 ]
机构
[1] Amer Univ Sharjah, Dept Chem Engn, Sharjah 26666, U Arab Emirates
关键词
Metal-organic frameworks; Drug delivery; Ultrasound; Triggered release; Encapsulation efficiency; Doxorubicin; NH2-Fe-BDC; TRIGGERED RELEASE; NANOCARRIERS; NANOPARTICLES; CHEMOTHERAPY;
D O I
10.1016/j.colsurfa.2021.127062
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In recent years, the use of metal-organic frameworks (MOFs) as drug nanocarriers has gained attention because of their extraordinary physical and chemical properties. In this work, dual-responsive iron-based MOFs were synthesized via the microwave-assisted method using FeCl(3 center dot)6 (H2O) as the metal cluster and 2-aminoterephthalic acid (NH2-BDC) as the organic linker (namely NH2-Fe-BDC) and loaded with the anti-cancer drug doxorubicin (DOX). The DOX-loaded MOFs were further functionalized with polyethylene glycol-folate (PEG-FA), yielding PEG-FA-NH2-Fe-BDC. The folate moiety is used to specifically target several cancers overexpressing the folate receptor (FR). These nanoparticles were characterized using Fourier-Transform Infrared Spectroscopy (FTIR), Xray Diffraction (XRD), Thermogravimetric Analysis (TGA), and Dynamic Light Scattering (DLS). The FTIR confirmed the PEG-FA conjugation to the MOFs, while the XRD patterns confirmed the crystallinity of the nanoparticles. TGA results demonstrated the thermal stability of the MOFs. Moreover, the DLS analysis showed that regular MOFs had a particle diameter of 577 nm, while the PEG-FA-functionalized MOF had a particle diameter of 461 nm, which demonstrates the improved colloidal stability of the functionalized MOF. The DOX encapsulation efficiency was determined to be approximately 97%, while the encapsulation capacity was around 14.5 wt%. Furthermore, the in-vitro release profiles were studied under different pH values (5.3 and 7.4) with and without low-frequency ultrasound (LFUS, at 40 kHz). The results confirmed the sonosensitivity of the nanovehicles, with US-triggered release efficiency reaching up to 90% after 280 min (at a pH of 5.3). The MTT study revealed that these nanocarriers are non-toxic at lower concentrations. Their toxicity increases at higher concentrations. Furthermore, the cellular uptake was investigated via flow cytometry, and the results showed that the conjugation of the PEG-FA moiety to the MOF's surface significantly enhanced uptake by cancer cells. Accordingly, this study showed the pH/US dual-responsive capability of NH2-Fe-BDC and PEG-FA-NH2-Fe-BDC.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Fabrication of a pH-responsive drug delivery system based on the super-paramagnetic metal-organic framework for targeted delivery of oxaliplatin
    Kohan Hoosh Nejad, Alireza
    Ahmad Panahi, Homayon
    Keshmirizadeh, Elham
    Torabi Fard, Niloufar
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2023, 72 (14) : 1083 - 1092
  • [2] Iron-Based Metal-Organic Frameworks in Drug Delivery and Biomedicine
    Liu, Xianbin
    Liang, Tiantian
    Zhang, Rongtao
    Ding, Qian
    Wu, Siqiong
    Li, Chunhong
    Lin, Yan
    Ye, Yun
    Zhong, Zhirong
    Zhou, Meiling
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (08) : 9643 - 9655
  • [3] A Biocompatible Ti-based metal-organic framework for pH responsive drug delivery
    Jiang, Ke
    Zhang, Ling
    Hu, Quan
    Yang, Yanyu
    Lin, Wenxin
    Cui, Yuanjing
    Yang, Yu
    Qian, Guodong
    MATERIALS LETTERS, 2018, 225 : 142 - 144
  • [4] Hybrid liposome/metal-organic framework as a promising dual-responsive nanocarriers for anticancer drug delivery
    Karami, Abdollah
    Ahmed, Ahmed
    Sabouni, Rana
    Husseini, Ghaleb A.
    Al Sharabati, Miral
    AlSawaftah, Nour
    Paul, Vinod
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2022, 217
  • [5] A multivariate metal-organic framework based pH-responsive dual-drug delivery system for chemotherapy and chemodynamic therapy
    Akbar, Muhammad Usman
    Akbar, Arslan
    Saddozai, Umair Ali Khan
    Khan, Malik Ihsan Ullah
    Zaheer, Muhammad
    Badar, Muhammad
    MATERIALS ADVANCES, 2023, 4 (22): : 5653 - 5667
  • [6] Combined application of surfactants and iron-based metal-organic framework nanoparticles for targeted delivery of insecticides
    Chen, Huiya
    Yang, Liupeng
    Wu, Peiqi
    Liu, Pengpeng
    Xu, Hanhong
    Zhang, Zhixiang
    CHEMICAL ENGINEERING JOURNAL, 2024, 488
  • [7] A biocompatible metal-organic framework as a pH and temperature dual-responsive drug carrier
    Lin, Wenxin
    Cui, Yuanjing
    Yang, Yu
    Hu, Quan
    Qian, Guodong
    DALTON TRANSACTIONS, 2018, 47 (44) : 15882 - 15887
  • [8] Folate-Modified pH and ROS Dual-Responsive Polymeric Nanocarriers for Targeted Anticancer Drug Delivery
    Dai, Fanjia
    Chen, Fengjiao
    Zhang, Jiaying
    Chen, Xianwu
    Liang, Hongze
    Liang, Zhenjiang
    Zhang, Shun
    Tan, Hui
    Zhao, Lingling
    ACS APPLIED NANO MATERIALS, 2024, 7 (07) : 7289 - 7299
  • [9] A porous Zn-based metal-organic framework for pH and temperature dual-responsive controlled drug release
    Lin, Wenxin
    Hu, Quan
    Jiang, Ke
    Cui, Yuanjing
    Yang, Yu
    Qian, Guodong
    MICROPOROUS AND MESOPOROUS MATERIALS, 2017, 249 : 55 - 60
  • [10] Utilization of Functionalized Metal-Organic Framework Nanoparticle as Targeted Drug Delivery System for Cancer Therapy
    Tran, Vy Anh
    Thuan Le, Van
    Doan, Van Dat
    Vo, Giang N. L.
    PHARMACEUTICS, 2023, 15 (03)