Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions

被引:28
作者
Shuang, Bo [1 ]
Wang, Wenxiao [2 ]
Shen, Hao [1 ]
Tauzin, Lawrence J. [1 ]
Flatebo, Charlotte [1 ]
Chen, Jianbo [2 ]
Moringo, Nicholas A. [1 ]
Bishop, Logan D. C. [1 ]
Kelly, Kevin F. [2 ]
Landes, Christy F. [1 ,2 ]
机构
[1] Rice Univ, Dept Chem, POB 1892, Houston, TX 77251 USA
[2] Rice Univ, Dept Elect & Comp Engn, POB 1892, Houston, TX 77251 USA
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
基金
美国国家科学基金会;
关键词
SINGLE-MOLECULE LOCALIZATION; 3-DIMENSIONAL SUPERRESOLUTION; PARTICLE TRACKING; FLUORESCENCE MICROSCOPY; DIFFRACTION-LIMIT; RECONSTRUCTION; DYNAMICS; ACCURATE; SPECTROSCOPY; DESORPTION;
D O I
10.1038/srep30826
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Super-resolution microscopy with phase masks is a promising technique for 3D imaging and tracking. Due to the complexity of the resultant point spread functions, generalized recovery algorithms are still missing. We introduce a 3D super-resolution recovery algorithm that works for a variety of phase masks generating 3D point spread functions. A fast deconvolution process generates initial guesses, which are further refined by least squares fitting. Overfitting is suppressed using a machine learning determined threshold. Preliminary results on experimental data show that our algorithm can be used to super-localize 3D adsorption events within a porous polymer film and is useful for evaluating potential phase masks. Finally, we demonstrate that parallel computation on graphics processing units can reduce the processing time required for 3D recovery. Simulations reveal that, through desktop parallelization, the ultimate limit of real-time processing is possible. Our program is the first open source recovery program for generalized 3D recovery using rotating point spread functions.
引用
收藏
页数:9
相关论文
共 67 条
  • [1] Fast Image Recovery Using Variable Splitting and Constrained Optimization
    Afonso, Manya V.
    Bioucas-Dias, Jose M.
    Figueiredo, Mario A. T.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (09) : 2345 - 2356
  • [2] Almeida M. S. C, 2011, FDN TRENDS MACHINE L, V3, P1
  • [3] Deconvolving Images With Unknown Boundaries Using the Alternating Direction Method of Multipliers
    Almeida, Mariana S. C.
    Figueiredo, Mario A. T.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (08) : 3074 - 3086
  • [4] Single-Molecule Catalysis Mapping Quantifies Site-Specific Activity and Uncovers Radial Activity Gradient on Single 2D Nanocrystals
    Andoy, Nesha May
    Zhou, Xiaochun
    Choudhary, Eric
    Shen, Hao
    Liu, Guokun
    Chen, Peng
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (05) : 1845 - 1852
  • [5] A high-density 3D localization algorithm for stochastic optical reconstruction microscopy
    Babcock, Hazen
    Sigal, Yaron M.
    Zhuang, Xiaowei
    [J]. Optical Nanoscopy, 2012, 1 (01) : 1 - 10
  • [6] Simultaneous, accurate measurement of the 3D position and orientation of single molecules
    Backlund, Mikael P.
    Lew, Matthew D.
    Backer, Adam S.
    Sahl, Steffen J.
    Grover, Ginni
    Agrawal, Anurag
    Piestun, Rafael
    Moerner, W. E.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (47) : 19087 - 19092
  • [7] Three-dimensional super-resolution and localization of dense clusters of single molecules
    Barsic, Anthony
    Grover, Ginni
    Piestun, Rafael
    [J]. SCIENTIFIC REPORTS, 2014, 4
  • [8] Imaging intracellular fluorescent proteins at nanometer resolution
    Betzig, Eric
    Patterson, George H.
    Sougrat, Rachid
    Lindwasser, O. Wolf
    Olenych, Scott
    Bonifacino, Juan S.
    Davidson, Michael W.
    Lippincott-Schwartz, Jennifer
    Hess, Harald F.
    [J]. SCIENCE, 2006, 313 (5793) : 1642 - 1645
  • [9] Distributed optimization and statistical learning via the alternating direction method of multipliers
    Boyd S.
    Parikh N.
    Chu E.
    Peleato B.
    Eckstein J.
    [J]. Foundations and Trends in Machine Learning, 2010, 3 (01): : 1 - 122
  • [10] Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731