Nonlinear time series prediction by weighted vector quantization

被引:0
|
作者
Lendasse, A
Francois, D
Wertz, V
Verleysen, M
机构
[1] Catholic Univ Louvain, CESAME, B-1348 Louvain, Belgium
[2] DICE, B-1348 Louvain, Belgium
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Classical nonlinear models for time series prediction exhibit improved capabilities compared to linear ones. Nonlinear regression has however drawbacks, such as overfitting and local minima problems, user-adjusted parameters, higher computation times, etc. There is thus a need for simple nonlinear models with a restricted number of learning parameters, high performances and reasonable complexity. In this paper, we present a method for nonlinear forecasting based on the quantization of vectors concatenating inputs (regressors) and outputs (predictions). Weighting techniques are applied to give more importance to inputs and outputs respectively. The method is illustrated on standard time series prediction benchmarks.
引用
收藏
页码:417 / 426
页数:10
相关论文
共 50 条
  • [31] OPTIMAL NONLINEAR INTERPOLATIVE VECTOR QUANTIZATION
    GERSHO, A
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1990, 38 (09) : 1285 - 1287
  • [32] Weighted multiscale Renyi permutation entropy of nonlinear time series
    Chen, Shijian
    Shang, Pengjian
    Wu, Yue
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 496 : 548 - 570
  • [33] Adaptive Weighted-function Models for Time Series Prediction
    Liu, Julie Yu-Chih
    Yuliani, Asri Rizki
    Wu, Chia-Ling
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 4871 - 4874
  • [34] Monitoring of Time Series Using Fuzzy Weighted Prediction Models
    Hryniewicz, Olgierd
    Kaczmarek-Majer, Katarzyna
    UNCERTAINTY MODELLING IN DATA SCIENCE, 2019, 832 : 107 - 114
  • [35] Weighted prediction method with multiple time series using multi-kernel least squares support vector regression
    Metoda ważonej predykcji wielokrotnych szeregów czasowych z wykorzystaniem wielojądrowej regresji wektorów wspierających metodą najmniejszych kwadratów
    2013, Polish Academy of Sciences Branch Lublin (15) : 188 - 194
  • [36] WEIGHTED PREDICTION METHOD WITH MULTIPLE TIME SERIES USING MULTI-KERNEL LEAST SQUARES SUPPORT VECTOR REGRESSION
    Guo, Yang-Ming
    Ran, Cong-Bao
    Li, Xiao-Lei
    Ma, Jie-Zhong
    Zhang, Lu
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2013, 15 (02): : 188 - 194
  • [37] A Weighted Learning Vector Quantization Approach for Interval Data
    Silva Filho, Telmo M.
    de Souza, Renata Maria Cardoso R.
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT III, 2012, 7665 : 504 - 511
  • [38] Ordered weighted learning vector quantization and clustering algorithms
    Karayiannis, NB
    1998 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AT THE IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE - PROCEEDINGS, VOL 1-2, 1998, : 1388 - 1393
  • [39] An investigation of lag identification tools for vector nonlinear time series
    Harvill, JL
    Ray, BK
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2000, 29 (08) : 1677 - 1701
  • [40] Investigating asymptotic properties of vector nonlinear time series models
    Banicescu, Ioana
    Carino, Ricolindo L.
    Harvill, Jane L.
    Lestrade, John Patrick
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (03) : 411 - 421