THE NUMBER OF GRIDPOINTS ON HYPERPLANE SECTIONS OF THE d-DIMENSIONAL CUBE

被引:0
作者
Abel, Ulrich [1 ]
机构
[1] Tech Hsch Mittelhessen, Dept MND, Wilhelm Leuschner Str 13, D-61169 Friedberg, Germany
关键词
SINC;
D O I
10.1090/proc/14233
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deduce a formula for the exact number of gridpoints (i.e., elements of Z(d)) in the extended d-dimensional cube nC(d) = [-n, +n](d) on intersecting hyperplanes. In the special case of the hyperplanes {x is an element of R-d vertical bar x(1) + ... + x(d) = b}, b is an element of Z, these numbers can be written as a finite sum involving products of certain binomial coefficients. Furthermore, we consider the limit as n tends to infinity which can be expressed in terms of Euler-Frobenius numbers. Finally, we state a conjecture on the asymptotic behaviour of this limit as the dimension d tends to infinity.
引用
收藏
页码:5349 / 5355
页数:7
相关论文
共 12 条
[1]   Integration von sinc-Produkten mit funktionentheoretischen Methoden [J].
Abel U. .
Mathematische Semesterberichte, 2014, 61 (2) :153-158
[2]  
[Anonymous], EXPOSE THEORIE PROPR
[3]   CUBE SLICING IN RN [J].
BALL, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 97 (03) :465-473
[4]   Multi-variable sinc integrals and volumes of polyhedra [J].
Borwein, D ;
Borwein, JM ;
Mares, BA .
RAMANUJAN JOURNAL, 2002, 6 (02) :189-208
[5]   Some remarkable properties of sinc and related integrals [J].
Borwein, D ;
Borwein, JM .
RAMANUJAN JOURNAL, 2001, 5 (01) :73-89
[6]  
de Haan David Bierens., 1867, NOUVELLES TABLES INT
[7]  
Evers D., 2010, HYPEREBENENSCHNITTE
[8]   Hyperplane Sections of the n-Dimensional Cube [J].
Frank, Rolfdieter ;
Riede, Harald .
AMERICAN MATHEMATICAL MONTHLY, 2012, 119 (10) :868-872
[9]   Die Berechnung des Integral \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\int_{ - \infty}^{\infty} ( \prod_{k = 1}^{n} \frac{\sin (a_{k}x)}{a_{k}x} ) \cdot\cos(bx)dx$\end{document} [J].
Rolfdieter Frank ;
Harald Riede .
Mathematische Semesterberichte, 2014, 61 (2) :145-151
[10]   Euler-Frobenius numbers [J].
Gawronski, Wolfgang ;
Neuschel, Thorsten .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2013, 24 (10) :817-830