Existence and decay of solutions to the two-dimensional fractional quasigeostrophic equation

被引:8
作者
Pu, Xueke [1 ]
Guo, Boling [2 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Chongqing 400044, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
关键词
NAVIER-STOKES EQUATIONS; UNIQUENESS; BEHAVIOR; EULER; SPACE;
D O I
10.1063/1.3460319
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper studies the fractional quasigeostrophic equation with modified dissipativity. We prove the global existence of weak solutions by employing the Galerkin approximation method, and when alpha is an element of (1/2, 1), the weak solution is unique. Finally, decay estimate for solutions in Sobolev norms is given. (C) 2010 American Institute of Physics. [doi:10.1063/1.3460319]
引用
收藏
页数:15
相关论文
共 25 条
[1]  
[Anonymous], 1969, QUELQUES METHODES RE
[2]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[3]  
COIFMAN RR, 1986, BEIJING LECTURES HAR, P3
[4]   FORMATION OF STRONG FRONTS IN THE 2-D QUASI-GEOSTROPHIC THERMAL ACTIVE SCALAR [J].
CONSTANTIN, P ;
MAJDA, AJ ;
TABAK, E .
NONLINEARITY, 1994, 7 (06) :1495-1533
[5]   Behavior of solutions of 2D quasi-geostrophic equations [J].
Constantin, P ;
Wu, JH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 30 (05) :937-948
[6]  
Constantin P, 2006, LECT NOTES MATH, V1871, P1
[7]   A maximum principle applied to quasi-geostrophic equations [J].
Córdoba, A ;
Córdoba, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 249 (03) :511-528
[8]  
Dijkstra HA., 2005, NONLINEAR PHYS OCEAN
[9]  
DUTTON JA, 1974, J ATMOS SCI, V31, P422, DOI 10.1175/1520-0469(1974)031<0422:TNQGEE>2.0.CO
[10]  
2