Robust Data-Driven Inference for Density-Weighted Average Derivatives

被引:17
|
作者
Cattaneo, Matias D. [1 ]
Crump, Richard K. [2 ]
Jansson, Michael [3 ,4 ]
机构
[1] Univ Michigan, Dept Econ, Ann Arbor, MI 48109 USA
[2] Fed Reserve Bank New York, New York, NY 10045 USA
[3] Univ Calif Berkeley, Dept Econ, Berkeley, CA 94720 USA
[4] CREATES, Berkeley, CA 94720 USA
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
Averaged derivative; Bandwidth selection; Robust inference; Small bandwidth asymptotics; SEMIPARAMETRIC ESTIMATION; BANDWIDTH CHOICE;
D O I
10.1198/jasa.2010.tm09590
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper presents a novel data-driven bandwidth selector compatible with the small bandwidth asymptotics developed in Cattaneo, Crump, and Jansson (2009) for density-weighted average derivatives. The new bandwidth selector is of the plug-in variety, and is obtained based on a mean squared error expansion of the estimator of interest. An extensive Monte Carlo experiment shows a remarkable improvement in performance when the bandwidth-dependent robust inference procedures proposed by Cattaneo. Crump, and Jansson (2009) are coupled with this new data-driven bandwidth selector. The resulting robust data-driven confidence intervals compare favorably to the alternative procedures available in the literature. The online supplemental material to this paper contains further results from the simulation study.
引用
收藏
页码:1070 / 1083
页数:14
相关论文
empty
未找到相关数据