Robust Data-Driven Inference for Density-Weighted Average Derivatives

被引:17
|
作者
Cattaneo, Matias D. [1 ]
Crump, Richard K. [2 ]
Jansson, Michael [3 ,4 ]
机构
[1] Univ Michigan, Dept Econ, Ann Arbor, MI 48109 USA
[2] Fed Reserve Bank New York, New York, NY 10045 USA
[3] Univ Calif Berkeley, Dept Econ, Berkeley, CA 94720 USA
[4] CREATES, Berkeley, CA 94720 USA
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
Averaged derivative; Bandwidth selection; Robust inference; Small bandwidth asymptotics; SEMIPARAMETRIC ESTIMATION; BANDWIDTH CHOICE;
D O I
10.1198/jasa.2010.tm09590
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper presents a novel data-driven bandwidth selector compatible with the small bandwidth asymptotics developed in Cattaneo, Crump, and Jansson (2009) for density-weighted average derivatives. The new bandwidth selector is of the plug-in variety, and is obtained based on a mean squared error expansion of the estimator of interest. An extensive Monte Carlo experiment shows a remarkable improvement in performance when the bandwidth-dependent robust inference procedures proposed by Cattaneo. Crump, and Jansson (2009) are coupled with this new data-driven bandwidth selector. The resulting robust data-driven confidence intervals compare favorably to the alternative procedures available in the literature. The online supplemental material to this paper contains further results from the simulation study.
引用
收藏
页码:1070 / 1083
页数:14
相关论文
共 50 条
  • [21] Data-driven inference of hidden nodes in networks
    Danh-Tai Hoang
    Jo, Junghyo
    Periwal, Vipul
    PHYSICAL REVIEW E, 2019, 99 (04)
  • [22] Data-Driven Precondition Inference with Learned Features
    Padhi, Saswat
    Sharma, Rahul
    Millstein, Todd
    ACM SIGPLAN NOTICES, 2016, 51 (06) : 42 - 56
  • [23] Data-Driven Abductive Inference of Library Specifications
    Zhou, Zhe
    Dickerson, Robert
    Delaware, Benjamin
    Jagannathan, Suresh
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2021, 5 (OOPSLA):
  • [24] Data-Driven Robust Congestion Pricing
    Wang, Yize
    Paccagnan, Dario
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 4437 - 4443
  • [25] Data-driven inference for the spatial scan statistic
    Almeida, Alexandre C. L.
    Duarte, Anderson R.
    Duczmal, Luiz H.
    Oliveira, Fernando L. P.
    Takahashi, Ricardo H. C.
    INTERNATIONAL JOURNAL OF HEALTH GEOGRAPHICS, 2011, 10
  • [26] Data-driven deep density estimation
    Puchert, Patrik
    Hermosilla, Pedro
    Ritschel, Tobias
    Ropinski, Timo
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (23): : 16773 - 16807
  • [27] Data-driven deep density estimation
    Patrik Puchert
    Pedro Hermosilla
    Tobias Ritschel
    Timo Ropinski
    Neural Computing and Applications, 2021, 33 : 16773 - 16807
  • [28] Data-driven hair segmentation with isomorphic manifold inference
    Wang, Dan
    Shan, Shiguang
    Zhang, Hongming
    Zeng, Wei
    Chen, Xilin
    IMAGE AND VISION COMPUTING, 2014, 32 (10) : 739 - 750
  • [29] Data-driven inference of physical devices: theory and implementation
    Buscemi, Francesco
    Dall'Arno, Michele
    NEW JOURNAL OF PHYSICS, 2019, 21 (11):
  • [30] Sampling strategies for data-driven inference of passivity properties
    Romer, Anne
    Montenbruck, Jan Maximilian
    Allgoewer, Frank
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,