Light scattering observations of spin reversal excitations in the fractional quantum Hall regime

被引:13
|
作者
Dujovne, I [1 ]
Hirjibehedin, CF
Pinczuk, A
Kang, M
Dennis, BS
Pfeiffer, LN
West, KW
机构
[1] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[2] Lucent Technol, Bell Labs, Murray Hill, NJ 07974 USA
[3] Columbia Univ, Dept Phys, New York, NY 10027 USA
[4] Washington State Univ, Dept Phys, Pullman, WA 99164 USA
关键词
fractional quantum Hall effect; composite fermions; spin excitations; inelastic light scattering;
D O I
10.1016/S0038-1098(03)00339-9
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Resonant inelastic light scattering experiments access the low lying excitations of electron liquids in the fractional quantum Hall regime in the range 2/5 greater than or equal to upsilon greater than or equal to 1/3. Modes associated with changes in the charge and spin degrees of freedom are measured. Spectra of spin reversed excitations at filling factor v; 1/3 and at v 2/5 identify a structure of lowest spin-split Landau levels of composite fermions (CFs) that is similar to that of electrons. Observations of spin wave excitations enable determinations of energies required to reverse spin. The spin reversal energies obtained from the spectra illustrate the significant residual interactions of composite fermions. At upsilon = 1/3 energies of spin reversal modes are larger but relatively close to spin conserving excitations that are linked to activated transport. Predictions of composite fermion theory are in good quantitative agreement with experimental results. (C) 2003 Published by Elsevier Science Ltd.
引用
收藏
页码:109 / 115
页数:7
相关论文
共 50 条
  • [41] Unraveling the Spin Polarization of the v=5/2 Fractional Quantum Hall State
    Tiemann, L.
    Gamez, G.
    Kumada, N.
    Muraki, K.
    SCIENCE, 2012, 335 (6070) : 828 - 831
  • [42] Reversed-spin quasiparticles in fractional quantum Hall systems and their effect on photoluminescence
    Szlufarska, I
    Wójs, A
    Quinn, JJ
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 12 (1-4) : 59 - 62
  • [43] Optically detected nuclear magnetic resonance from a single heterojunction in the fractional quantum Hall regime
    Davies, HDM
    Brockbank, RL
    Ryan, JF
    Turberfield, AJ
    PHYSICA B-CONDENSED MATTER, 1998, 256 : 104 - 112
  • [44] A comparison: 2D electron- and hole systems in the fractional quantum Hall regime
    Hadzibrahimovic, Adriana
    Dethlefsen, Annelene F.
    Reuter, Dirk
    Wieck, Andreas D.
    Tranitz, Hans-Peter
    Wegscheider, Werner
    Haug, Rolf J.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (05) : 1258 - 1260
  • [45] Non-equilibrium transport along an edge of variable slope in the fractional quantum Hall regime
    Franklin, JDF
    Ford, CJB
    Simmons, MY
    Ritchie, DA
    Pepper, M
    PHYSICA B-CONDENSED MATTER, 1998, 249 : 405 - 409
  • [46] Magnetocapacitance study of the fractional-quantum-Hall effect: Quasiparticle charge and spin polarization
    Dorozhkin, SI
    Dorokhova, MO
    Haug, RJ
    Ploog, K
    PHYSICA E, 1997, 1 (1-4): : 59 - 61
  • [47] Edge state propagation direction in the fractional quantum Hall regime: multi-terminal magnetocapacitance experiment
    Moon, JS
    Simmons, JA
    Johnson, BL
    Reno, JL
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2000, 6 (1-4) : 95 - 99
  • [48] Luttinger liquids and composite fermions in nanostructures: What is the nature of the edge states in the fractional quantum Hall regime?
    Geller, MR
    Loss, D
    Kirczenow, G
    SUPERLATTICES AND MICROSTRUCTURES, 1997, 21 (01) : 49 - 60
  • [49] Spin-Orbit Interaction Enhanced Fractional Quantum Hall States in the Second Landau Level
    Ito, Toru
    Nomura, Kentaro
    Shibata, Naokazu
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2010, 79 (07)
  • [50] The guiding center role in defining the eigenstates of an electron in the fractional quantum Hall effect regime: ladder operators approach
    Bentalha, Z.
    PHYSICA SCRIPTA, 2024, 99 (06)