Small representations of finite distributive lattices as congruence lattices (vol 123, pg 1959, 1995)

被引:8
作者
Gratzer, G [1 ]
Rival, I
Zaguia, N
机构
[1] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada
[2] Univ Ottawa, Dept Comp Sci, Ottawa, ON K1N 6N5, Canada
关键词
congruence lattice; finite lattice; distributive lattice;
D O I
10.1090/S0002-9939-98-04838-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:2509 / 2510
页数:2
相关论文
共 50 条
  • [41] Congruence lattices and cover-preserving embeddings of finite length semimodular lattices. I
    E. Tamás Schmidt
    Acta Scientiarum Mathematicarum, 2011, 77 (1-2): : 47 - 52
  • [42] Finite distributive lattices which are isomorphic to direct products of chains
    S. Lavanya
    S. Parameshwara Bhatta
    algebra universalis, 1997, 37 : 448 - 457
  • [43] DISTRIBUTIVE LATTICES DEFINED FOR REPRESENTATIONS OF RANK TWO SEMISIMPLE LIE ALGEBRAS
    Alverson, L. Wyatt, II
    Donnelly, Robert G.
    Lewis, Scott J.
    Mcclard, Marti
    Pervine, Robert
    Proctor, Robert A.
    Wildberger, N. J.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (01) : 527 - 559
  • [44] Constructions of representations of rank two semisimples Lie algebras with distributive lattices
    Alverson, L. Wyatt, II
    Donnelly, Robert G.
    Lewis, Scott J.
    Pervine, Robert
    ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01)
  • [45] Pseudo-polynomial functions over finite distributive lattices
    Couceiro, Miguel
    Waldhauser, Tamas
    FUZZY SETS AND SYSTEMS, 2014, 239 : 21 - 34
  • [46] Finite distributive lattices which are isomorphic to direct products of chains
    Lavanya, S
    Bhatta, SP
    ALGEBRA UNIVERSALIS, 1997, 37 (04) : 448 - 457
  • [47] THE SEMIRING VARIETY GENERATED BY ANY FINITE NUMBER OF FINITE FIELDS AND DISTRIBUTIVE LATTICES
    Shao, Yong
    Ren, Miaomiao
    Crvenkovic, Sinisa
    Mitrovic, Melanija
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2015, 98 (112): : 45 - 51
  • [48] A Study of the Small Inductive Dimension in the Area of Finite Lattices
    Georgiou, D.
    Megaritis, A.
    Prinos, G.
    Sereti, F.
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2024, 41 (02): : 437 - 461
  • [49] The small inductive dimension of finite lattices through matrices
    Beshimov, R. B.
    Georgiou, D.
    Sereti, F.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (04)
  • [50] BINARY REPRESENTATIONS OF ALGEBRAS WITH AT MOST TWO BINARY OPERATIONS. A CAYLEY THEOREM FOR DISTRIBUTIVE LATTICES
    Movsisyan, Yu. M.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2009, 19 (01) : 97 - 106