Electrochemical performance and lithium-ion insertion/extraction mechanism studies of the novel Li2ZrO3 anode materials

被引:38
作者
Dong, Youzhong [1 ]
Zhao, Yanming [1 ]
Duan, He [2 ]
Huang, Jiawei [1 ]
机构
[1] S China Univ Technol, Dept Phys, Guangzhou 510640, Guangdong, Peoples R China
[2] Guangdong Univ Technol, Sch Phys & Optoelect Engn, Guangzhou 510006, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
anode materials; lithium zirconate; in situ x-ray diffraction; ELECTRODES; BATTERY; STORAGE; LI4TI5O12;
D O I
10.1016/j.electacta.2015.01.220
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Li2ZrO3 anode materials were prepared by the conventional solid-state reaction. The crystal structure has been determined by X-ray diffraction. Electrochemical tests show that Li2ZrO3 anode materials process a excellent cycle performance and rate capability due to the good structural stability and high lithium diffusion coefficients. For the Li2ZrO3 anode material, the change of the unit cell volume is only similar to 0.3% at discharge or charge process. Except for the first several cycles, the coulombic efficiency of the Li2ZrO3 electrodewas nearly 100% at a discharge/charge rate of 0.3 C. The lithium diffusion coefficients of Li2ZrO3 for the reduction and oxidation process are calculated to be 3.165 x 10(-6) and 1.919 x 10(-6)cm(2) s(-1) respectively which is much higher than that of the Li4Ti5O12 anode material (about 10 x 9 to 10(-13)cm(2) s(-1)). In situ XRD results, combined the sloping character of the charge/discharge voltage profiles and the lithium ion diffusion controlled mechanism in the charge and discharge process, showthat the insertion/extraction mechanism of Li+ for Li2ZrO3 can be interpreted as a solid-solution behavior. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:219 / 225
页数:7
相关论文
共 31 条
  • [1] Armstrong AR, 2011, NAT MATER, V10, P223, DOI [10.1038/nmat2967, 10.1038/NMAT2967]
  • [2] Impact of nanosizing on lithiated rutile TiO2
    Borghols, Wouter J. H.
    Wagemaker, Marnix
    Lafont, Ugo
    Kelder, Erik M.
    Mulder, Fokko M.
    [J]. CHEMISTRY OF MATERIALS, 2008, 20 (09) : 2949 - 2955
  • [3] Nanomaterials for rechargeable lithium batteries
    Bruce, Peter G.
    Scrosati, Bruno
    Tarascon, Jean-Marie
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) : 2930 - 2946
  • [4] Synthesis of hierarchical mesoporous nest-like Li4Ti5O12 for high-rate lithium ion batteries
    Chen, Jizhang
    Yang, Li
    Fang, Shaohua
    Hirano, Shin-ichi
    Tachibana, Kazuhiro
    [J]. JOURNAL OF POWER SOURCES, 2012, 200 : 59 - 66
  • [5] CRYSTAL STRUCTURE OF LI2ZR03 AND LI2HF03
    DITTRICH, G
    HOPPE, R
    [J]. ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 1969, 371 (5-6): : 306 - &
  • [6] Electrical Energy Storage for the Grid: A Battery of Choices
    Dunn, Bruce
    Kamath, Haresh
    Tarascon, Jean-Marie
    [J]. SCIENCE, 2011, 334 (6058) : 928 - 935
  • [7] Electrical conductivity of Li2TiO3 ceramics
    Fehr, Th.
    Schmidbauer, E.
    [J]. SOLID STATE IONICS, 2007, 178 (1-2) : 35 - 41
  • [8] Tritium inventory in Li2TiO3 blanket
    Hashimoto, K
    Nishikawa, M
    Nakashima, N
    Beloglazov, S
    Enoeda, M
    [J]. FUSION ENGINEERING AND DESIGN, 2002, 61-62 : 375 - 381
  • [9] Carbon-Encapsulated Fe3O4 Nanoparticles as a High-Rate Lithium Ion Battery Anode Material
    He, Chunnian
    Wu, Shan
    Zhao, Naiqin
    Shi, Chunsheng
    Liu, Enzuo
    Li, Jiajun
    [J]. ACS NANO, 2013, 7 (05) : 4459 - 4469
  • [10] Structural and anisotropic thermal expansion correlation of Li2ZrO3 at different temperatures
    Heiba, ZK
    El-Sayed, K
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2002, 35 : 634 - 636