Stimulus Protocol Determines the Most Computationally Efficient Preconditioner for the Bidomain Equations

被引:8
作者
Bernabeu, Miguel O. [1 ]
Pathmanathan, Pras [1 ]
Pitt-Francis, Joe [1 ]
Kay, David [1 ]
机构
[1] Univ Oxford, Comp Lab, Oxford OX1 3QD, England
基金
英国工程与自然科学研究理事会;
关键词
Bidomain equations; computational efficiency; preconditioning; whole heart geometries; REACTION-DIFFUSION SYSTEMS; MULTIGRID PRECONDITIONER; CARDIAC VULNERABILITY; ELECTRICAL BEHAVIOR; MONODOMAIN; TISSUE;
D O I
10.1109/TBME.2010.2078817
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The efficient solution of the bidomain equations is a fundamental tool in the field of cardiac electrophysiology. When choosing a finite element discretization of the coupled system, one has to deal with the solution of a large, highly sparse system of linear equations. The conjugate gradient algorithm, along with suitable preconditioning, is the natural choice in this scenario. In this study, we identify the optimal preconditioners with respect to both stimulus protocol and mesh geometry. The results are supported by a comprehensive study of the mesh-dependence properties of several preconditioning techniques found in the literature. Our results show that when only intracellular stimulus is considered, incomplete LU factorization remains a valid choice for current cardiac geometries. However, when extracellular shocks are delivered to tissue, preconditioners that take into account the structure of the system minimize execution time and ensure mesh-independent convergence.
引用
收藏
页码:2806 / 2815
页数:10
相关论文
共 28 条
  • [1] [Anonymous], 2003, ITERATIVE METHODS SP, DOI DOI 10.1137/1.9780898718003
  • [2] Development of an anatomically detailed MRI-derived rabbit ventricular model and assessment of its impact on simulations of electrophysiological function
    Bishop, Martin J.
    Plank, Gernot
    Burton, Rebecca A. B.
    Schneider, Juergen E.
    Gavaghan, David J.
    Grau, Vicente
    Kohl, Peter
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2010, 298 (02): : H699 - H718
  • [3] A parallel solver for reaction-diffusion systems in computational electrocardiology
    Colli-Franzone, P
    Pavarino, LF
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2004, 14 (06) : 883 - 911
  • [4] Parallel multigrid preconditioner for the cardiac bidomain model
    dos Santos, RW
    Plank, G
    Bauer, S
    Vigmond, EJ
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (11) : 1960 - 1968
  • [5] HENRIQUEZ CS, 1993, CRIT REV BIOMED ENG, V21, P1
  • [6] Laminar arrangement of ventricular myocytes influences electrical behavior of the heart
    Hooks, Darren A.
    Trew, Mark L.
    Caldwell, Bryan J.
    Sands, Gregory B.
    LeGrice, Ian J.
    Smaill, Bruce H.
    [J]. CIRCULATION RESEARCH, 2007, 101 (10) : E103 - E112
  • [7] Keener J., 1998, INTERD APPL
  • [8] The role of transmural ventricular heterogeneities in cardiac vulnerability to electric shocks
    Maharaj, Thushka
    Blake, Robert
    Trayanova, Natalia
    Gavaghan, David
    Rodriguez, Blanca
    [J]. PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2008, 96 (1-3) : 321 - 338
  • [9] DECOUPLED SCHWARZ ALGORITHMS FOR IMPLICIT DISCRETIZATIONS OF NONLINEAR MONODOMAIN AND BIDOMAIN SYSTEMS
    Munteanu, Marilena
    Pavarino, Luca F.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2009, 19 (07) : 1065 - 1097
  • [10] A numerical guide to the solution of the bidomain equations of cardiac electrophysiology
    Pathmanathan, Pras
    Bernabeu, Miguel O.
    Bordas, Rafel
    Cooper, Jonathan
    Garny, Alan
    Pitt-Francis, Joe M.
    Whiteley, Jonathan P.
    Gavaghan, David J.
    [J]. PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2010, 102 (2-3) : 136 - 155