Chemical bath deposition of SnS2 nanowall arrays with improved electrochemical performance for lithium ion battery

被引:46
作者
Liu, Shuang
Yin, Xiaoming
Hao, Quanyi
Zhang, Ming
Li, Limiao
Chen, Libao
Li, Qiuhong [1 ]
Wang, Yanguo
Wang, Taihong
机构
[1] Hunan Univ, Minist Educ, Key Lab Micronano Optoelect Devices, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Crystal growth; Surfaces; Chemical bath deposition; Lithium ion battery; ELECTRODES; TEMPERATURE; FABRICATION; CAPACITY; ANODES; FILMS;
D O I
10.1016/j.matlet.2010.07.052
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A facile chemical bath deposition (CBD) approach has been developed to fabricating SnS2 nanowall (NW) arrays directly on copper foils. As an anode material for lithium ion battery, the NW arrays exhibit enhanced lithium ion storage property. At a rate of 0.3 C, the NW arrays maintain a capacity of about 700 mA h g(-1) after 40 cycles. Even at a high rate of 1.2 C, the NW arrays can still deliver a stable capacity of 400 mA h g(-1) The high electrochemical performance is well related to the in situ growth of uniform SnS2 nanostructures on a conductive copper current collector, which results in a robust adhesion for the SnS2 NW on the copper, and leads to an enhanced electron conductivity, improved lithium ion transport, and sustained volume variations. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2350 / 2353
页数:4
相关论文
共 17 条
[1]  
ASWANI Y, 2009, ANGEW CHEM INT EDIT, V48, P1
[2]   Composite negative electrodes for lithium ion cells [J].
Brousse, T ;
Lee, SM ;
Pasquereau, L ;
Defives, D ;
Schleich, DM .
SOLID STATE IONICS, 1998, 113 :51-56
[3]   Growth and characterization of tin disulfide (SnS2) thin film deposited by successive ionic layer adsorption and reaction (SILAR) technique [J].
Deshpande, N. G. ;
Sagade, A. A. ;
Gudage, Y. G. ;
Lokhande, C. D. ;
Sharma, Ramphal .
JOURNAL OF ALLOYS AND COMPOUNDS, 2007, 436 (1-2) :421-426
[4]   Morphology effect on the electrochemical performance of NiO films as anodes for lithium ion batteries [J].
Huang, X. H. ;
Tu, J. P. ;
Xia, X. H. ;
Wang, X. L. ;
Xiang, J. Y. ;
Zhang, L. ;
Zhou, Y. .
JOURNAL OF POWER SOURCES, 2009, 188 (02) :588-591
[5]   EFFECTS OF SUBSTRATE-TEMPERATURE ON ABSORPTION-EDGE AND PHOTOCURRENT IN EVAPORATED AMORPHOUS SNS2 FILMS [J].
KAWANO, K ;
NAKATA, R ;
SUMITA, M .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1989, 22 (01) :136-141
[6]   One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance [J].
Ke, Fu-Sheng ;
Huang, Ling ;
Wei, Guo-Zhen ;
Xue, Lian-Jie ;
Li, Jun-Tao ;
Zhang, Bo ;
Chen, Shu-Ru ;
Fan, Xiao-Yong ;
Sun, Shi-Gang .
ELECTROCHIMICA ACTA, 2009, 54 (24) :5825-5829
[7]   Novel SnS2-nanosheet anodes for lithium-ion batteries [J].
Kim, Tae-Joon ;
Kirn, Chunjoong ;
Son, Dongyeon ;
Choi, Myungsuk ;
Park, Byungwoo .
JOURNAL OF POWER SOURCES, 2007, 167 (02) :529-535
[8]   Mesoporous CO3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability [J].
Li, Yanguang ;
Tan, Bing ;
Wu, Yiying .
NANO LETTERS, 2008, 8 (01) :265-270
[9]   High performance binderless TiO2 nanowire arrays electrode for lithium-ion battery [J].
Li, Yueming ;
Lv, Xiaojun ;
Li, Jinghong .
APPLIED PHYSICS LETTERS, 2009, 95 (11)
[10]   Synthesis of self-assembled 3D flowerlike SnS2 nanostructures with enhanced lithium ion storage property [J].
Liu, Shuang ;
Yin, Xiaoming ;
Chen, Libao ;
Li, Qiuhong ;
Wang, Taihong .
SOLID STATE SCIENCES, 2010, 12 (05) :712-718