SOLITON SOLUTIONS FOR ANTI-CUBIC NONLINEARITY USING THREE ANALYTICAL APPROACHES

被引:11
作者
Ramzan, Muhammad [1 ]
Chu, Yu-Ming [2 ,3 ]
Rehman, Hamood Ur [1 ]
Saleem, Muhammad Shoaib [1 ]
Park, Choonkil [4 ]
机构
[1] Univ Okara, Dept Math, Okara 56300, Pakistan
[2] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[3] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410004, Peoples R China
[4] Hanyang Univ, Dept Math, Seoul 04763, South Korea
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2021年 / 11卷 / 04期
关键词
Nonlinear schrodinger equation; anti-cubic nonliearity; modified kudryashov method; exp(a)-function method; generalized tanh-method; SINGULAR OPTICAL SOLITONS; VARIATIONAL ITERATION METHOD; TIME-DEPENDENT COEFFICIENTS; SCHRODINGERS EQUATION; KERR; DARK; NLSE; PERTURBATION; FIBERS;
D O I
10.11948/20200380
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, three constructive techniques namely, Exp a -function method, the modified Kudryashov method and the generalized tanh-method are adopted to analyze the nonlinear Schrodinger equation having anti-cubic nonlinearity. Nonlinear Schrodinger equation is a comprehensive model that governs wave behavior in optical fiber. Cubic-quintic nonlinear Schrodinger equation, additionally having anti-cubic nonlinear term is investigated to construct bright, dark, kink and singular soliton solutions. The graphical representations of the soliton propagation are also demonstrated by the solutions obtained using these three techniques.
引用
收藏
页码:2177 / 2192
页数:16
相关论文
共 53 条
  • [11] Optical soliton perturbation with anti-cubic nonlinearity by semi-inverse variational principle
    Biswas, Anjan
    Zhou, Qin
    Ullah, Malik Zaka
    Triki, Houria
    Moshokoa, Seithuti P.
    Belic, Milivoj
    [J]. OPTIK, 2017, 143 : 131 - 134
  • [12] Infinite generation of soliton-like solutions for complex nonlinear evolution differential equations via the NLSE-based constructive method
    Dai, Chao-Qing
    Wang, Yue-Yue
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 236 : 606 - 612
  • [13] Discrete spatial optical solitons in waveguide arrays
    Eisenberg, HS
    Silberberg, Y
    Morandotti, R
    Boyd, AR
    Aitchison, JS
    [J]. PHYSICAL REVIEW LETTERS, 1998, 81 (16) : 3383 - 3386
  • [14] Optical solitons with anti-cubic nonlinearity by extended trial equation method
    Ekici, Mehmet
    Mirzazadeh, Mohammad
    Sonmezoglu, Abdullah
    Ullah, Malik Zaka
    Zhou, Qin
    Triki, Houria
    Moshokoa, Seithuti P.
    Biswas, Anjan
    [J]. OPTIK, 2017, 136 : 368 - 373
  • [15] Dark and singular optical solitons with Kundu-Eckhaus equation by extended trial equation method and extended G′/G-expansion scheme
    Ekici, Mehmet
    Mirzazadeh, Mohammad
    Sonmezoglu, Abdullah
    Zhou, Qin
    Moshokoa, Seithuti P.
    Biswas, Anjan
    Belic, Milivoj
    [J]. OPTIK, 2016, 127 (22): : 10490 - 10497
  • [16] Constructing of exact solutions to the nonlinear Schrodinger equation (NLSE) with power-law nonlinearity by the Weierstrass elliptic function method
    El Achab, Abdelfattah
    [J]. OPTIK, 2016, 127 (03): : 1229 - 1232
  • [17] Eslami M, 2016, NONLINEAR DYNAM, V85, P813, DOI 10.1007/s11071-016-2724-2
  • [18] Optical solitons for the resonant nonlinear Schrodinger's equation with time-dependent coefficients by the first integral method
    Eslami, M.
    Mirzazadeh, M.
    Vajargah, B. Fathi
    Biswas, Anjan
    [J]. OPTIK, 2014, 125 (13): : 3107 - 3116
  • [19] Soliton solutions of the resonant nonlinear Schrodinger's equation in optical fibers with time-dependent coefficients by simplest equation approach
    Eslami, M.
    Mirzazadeh, M.
    Biswas, Anjan
    [J]. JOURNAL OF MODERN OPTICS, 2013, 60 (19) : 1627 - 1636
  • [20] Envelope solitons of nonlinear Schrodinger equation with an anti-cubic nonlinearity
    Fedele, R
    Schamel, H
    Karpman, VI
    Shukla, PK
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (04): : 1169 - 1173