SOLITON SOLUTIONS FOR ANTI-CUBIC NONLINEARITY USING THREE ANALYTICAL APPROACHES

被引:11
作者
Ramzan, Muhammad [1 ]
Chu, Yu-Ming [2 ,3 ]
Rehman, Hamood Ur [1 ]
Saleem, Muhammad Shoaib [1 ]
Park, Choonkil [4 ]
机构
[1] Univ Okara, Dept Math, Okara 56300, Pakistan
[2] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[3] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410004, Peoples R China
[4] Hanyang Univ, Dept Math, Seoul 04763, South Korea
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2021年 / 11卷 / 04期
关键词
Nonlinear schrodinger equation; anti-cubic nonliearity; modified kudryashov method; exp(a)-function method; generalized tanh-method; SINGULAR OPTICAL SOLITONS; VARIATIONAL ITERATION METHOD; TIME-DEPENDENT COEFFICIENTS; SCHRODINGERS EQUATION; KERR; DARK; NLSE; PERTURBATION; FIBERS;
D O I
10.11948/20200380
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, three constructive techniques namely, Exp a -function method, the modified Kudryashov method and the generalized tanh-method are adopted to analyze the nonlinear Schrodinger equation having anti-cubic nonlinearity. Nonlinear Schrodinger equation is a comprehensive model that governs wave behavior in optical fiber. Cubic-quintic nonlinear Schrodinger equation, additionally having anti-cubic nonlinear term is investigated to construct bright, dark, kink and singular soliton solutions. The graphical representations of the soliton propagation are also demonstrated by the solutions obtained using these three techniques.
引用
收藏
页码:2177 / 2192
页数:16
相关论文
共 53 条
  • [1] The extended tanh method and its applications for solving nonlinear physical models
    Abdou, M. A.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (01) : 988 - 996
  • [2] Solutions of nonlinear systems by reproducing kernel method
    Akgul, Ali
    Khan, Yasir
    Akgul, Esra Karatas
    Baleanu, Dumitru
    Al Qurashi, Maysaa Mohamed
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (08): : 4408 - 4417
  • [3] REPRODUCING KERNEL FUNCTIONS FOR DIFFERENCE EQUATIONS
    Akgul, Ali
    Inc, Mustafa
    Karatas, Esra
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2015, 8 (06): : 1055 - 1064
  • [4] Exact solutions to the Benney-Luke equation and the Phi-4 equations by using modified simple equation method
    Akter, Jesmin
    Akbar, M. Ali
    [J]. RESULTS IN PHYSICS, 2015, 5 : 125 - 130
  • [5] General Expa-function method for nonlinear evolution equations
    Ali, Ahmad T.
    Hassan, Ezzat R.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (02) : 451 - 459
  • [6] Optical solitons and stability analysis of the NLSE with anti cubic nonlinearity
    Asian, Ebru Cavlak
    Inc, Mustafa
    Baleanu, Dumitru
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2017, 109 : 784 - 793
  • [7] On traveling wave solutions: The Wu-Zhang system describing dispersive long waves
    Awan, A. U.
    Tahir, M.
    Rehman, H. U.
    [J]. MODERN PHYSICS LETTERS B, 2019, 33 (06):
  • [8] Chirped and chirp-free optical solitons with generalized anti-cubic nonlinearity by extended trial function scheme
    Biswas, Anjan
    Ekici, Mehmet
    Sonmezoglu, Abdullah
    Belic, Milivoj
    [J]. OPTIK, 2019, 178 : 636 - 644
  • [9] Resonant optical solitons with anti-cubic nonlinearity
    Biswas, Anjan
    Jawad, Anwar Ja'afar Mohamad
    Zhou, Qin
    [J]. OPTIK, 2018, 157 : 525 - 531
  • [10] Resonant 1-soliton solution in anti-cubic nonlinear medium with perturbations
    Biswas, Anjan
    Zhou, Qin
    Moshokoa, Seithuti P.
    Triki, Houria
    Belic, Milivoj
    Alqahtani, Rubayyi T.
    [J]. OPTIK, 2017, 145 : 14 - 17