FBstab: A proximally stabilized semismooth algorithm for convex quadratic programming

被引:22
作者
Liao-McPherson, Dominic [1 ]
Kolmanovsky, Ilya [1 ]
机构
[1] Univ Michigan, Dept Aerosp Engn, 1221 Beal Ave, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Real-time optimization; Model predictive control; Optimization algorithms; Quadratic programming; GRADIENT-PROJECTION ALGORITHM; CONVERGENCE ANALYSIS; OPTIMIZATION; OPERATORS; BOUNDS; CODE;
D O I
10.1016/j.automatica.2019.108801
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces the proximally stabilized Fischer-Burmeister method (FBstab); a new algorithm for convex quadratic programming that synergistically combines the proximal point algorithm with a primal-dual semismooth Newton-type method. FBstab is numerically robust, easy to warmstart, handles degenerate primal-dual solutions, detects infeasibility/unboundedness and requires only that the Hessian matrix be positive semidefinite. We outline the algorithm, provide convergence and convergence rate proofs, and report some numerical results from model predictive control benchmarks and from the Maros-Meszaros test set. We show that FBstab is competitive with state of the art methods and is especially promising for model predictive control and other parameterized problems. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 58 条