Modeling interactions between fire and atmosphere in discrete element fuel beds

被引:79
作者
Linn, R
Winterkamp, J
Colman, JJ
Edminster, C
Bailey, JD
机构
[1] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA
[2] US Forest Serv, USDA, Rocky Mt Res Stn, Flagstaff, AZ 86001 USA
[3] No Arizona Univ, Sch Forestry, Flagstaff, AZ 86011 USA
关键词
fire propagation; FIRETEC; HIGRAD; VELOCITY STATISTICS; WAVING WHEAT; WIND-TUNNEL; CROWN FIRES; JACK PINE; AIR-FLOW; SPREAD;
D O I
10.1071/WF04043
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
In this text we describe an initial attempt to incorporate discrete porous element fuel beds into the coupled atmosphere - wildfire behavior model HIGRAD/ FIRETEC. First we develop conceptual models for use in translating measured tree data ( in this case a ponderosa pine forest) into discrete fuel elements. Then data collected at experimental sites near Flagstaff, Arizona are used to create a discontinuous canopy fuel representation in HIGRAD/ FIRETEC. Four simulations are presented with different canopy and understory configurations as described in the text. The results are discussed in terms of the same two discrete locations within the canopy for each simulation. The canopy structure had significant effects on the balance between radiative and convective heating in driving the fire and indeed sometimes determinedwhether a specific tree burned or not. In our simulations the ground fuel density was the determining factor in the overall spread rate of the fire, even when the overstory was involved in the fire. This behavior is well known in the fire meteorology community. In the future, simulations of this type could help land managers to better understand the role of canopy and understory structure in determining fire behavior, and thus help them decide between the different thinning and fuel treatment strategies available to them.
引用
收藏
页码:37 / 48
页数:12
相关论文
共 16 条
[1]   PREDICTED AND OBSERVED RATES OF SPREAD OF CROWN FIRES IN IMMATURE JACK PINE [J].
ALBINI, FA ;
STOCKS, BJ .
COMBUSTION SCIENCE AND TECHNOLOGY, 1986, 48 (1-2) :65-76
[2]  
[Anonymous], 1991, INT438 USDA FOR SERV, DOI DOI 10.1007/s10021-007-9022-2
[3]   Adjustment of a turbulent boundary layer to a canopy of roughness elements [J].
Belcher, SE ;
Jerram, N ;
Hunt, JCR .
JOURNAL OF FLUID MECHANICS, 2003, 488 :369-398
[4]   A WIND-TUNNEL STUDY OF AIR-FLOW IN WAVING WHEAT - SINGLE-POINT VELOCITY STATISTICS [J].
BRUNET, Y ;
FINNIGAN, JJ ;
RAUPACH, MR .
BOUNDARY-LAYER METEOROLOGY, 1994, 70 (1-2) :95-132
[5]   Aerial and surface fuel consumption in crown fires [J].
Call, PT ;
Albini, FA .
INTERNATIONAL JOURNAL OF WILDLAND FIRE, 1997, 7 (03) :259-264
[6]  
CALOGINE D, 2002, P 4 INT C FOR FIR RE
[7]  
CRUZ MG, 2002, P 4 INT C FOR FIR RE
[8]  
Finnigan J. J., 1995, P3, DOI 10.1017/CBO9780511600425.002
[9]  
Linn R., 1997, A transport model for prediction of wildfire behavior
[10]   Trabeculectomy -: Not only filtration [J].
Linnér, E .
JOURNAL OF GLAUCOMA, 2002, 11 (01) :1-2