Efficient second harmonic generation in low-loss planar GaN waveguides

被引:21
|
作者
Gromovyi, Maksym [1 ]
Brault, Julien [1 ]
Courville, Aimeric [1 ]
Rennesson, Stephanie [1 ]
Semond, Fabrice [1 ]
Feuillet, Guy [4 ]
Baldi, Pascal [2 ]
Boucaud, Philippe [3 ]
Duboz, Jean-Yves [1 ]
De Micheli, Marc P. [2 ]
机构
[1] Univ Cote dAzur, CNRS, CRHEA, Rue Bernard Gregory, F-06560 Valbonne, France
[2] Univ Cote dAzur, CNRS, IN NI, Parc Valrose, F-06100 Nice, France
[3] Univ Paris Saclay, Univ Paris Sud, CNRS, Ctr Nanosci & Nanotechnol, Batiment 220,Rue Andre Ampere, F-91405 Orsay, France
[4] Univ Grenoble Alpes, CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
来源
OPTICS EXPRESS | 2017年 / 25卷 / 19期
关键词
NITRIDE; FILMS; RESONATORS;
D O I
10.1364/OE.25.023035
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate low- loss GaN/AlGaN planar waveguides grown by molecular beam epitaxy on sapphire substrates. By using a proper AlGaN cladding layer and reducing surface roughness we reach <1dB/cm propagation losses at 633nm. These low propagation losses allow an efficient second harmonic generation using modal phase matching between a TM0 pump at 1260nm and a TM2 second harmonic at 630nm. A maximal power conversion of 2% is realized with an efficiency of 0.15%center dot W(-1)cm(-2). We provide a modelling that demonstrates broadband features of GaN/AlGaN platform by showing second harmonic wavelengths tunability from the visible up to the near-infrared spectral region. We discuss drawbacks of modal phase matching and propose a novel solution which allows a drastic improvement of modal overlaps with the help of a planar polarity inversion. This new approach is compatible with low propagation losses and may allow as high as 100%center dot W(-1)cm(-2) conversion efficiencies in the future. (C) 2017 Optical Society of America
引用
收藏
页码:23035 / 23044
页数:10
相关论文
共 50 条
  • [21] Ultra-broadband and low-loss edge coupler for highly efficient second harmonic generation in thin-film lithium niobate
    Liu, Xiaoyue
    Gao, Shengqian
    Zhang, Chi
    Pan, Ying
    Ma, Rui
    Zhang, Xian
    Liu, Lin
    Xie, Zhenda
    Zhu, Shining
    Yu, Siyuan
    Caia, Xinlun
    ADVANCED PHOTONICS NEXUS, 2022, 1 (01):
  • [22] Efficient second harmonic generation in silicon covered lithium niobate waveguides
    Fang, Bin
    Gao, Shenglun
    Wang, Zhizhang
    Zhu, Shining
    Li, Tao
    CHINESE OPTICS LETTERS, 2021, 19 (06)
  • [23] Efficient second harmonic generation in nanophotonic GaAs-on-insulator waveguides
    Stanton, Eric J.
    Chiles, Jeff
    Nader, Nima
    Moody, Galan
    Volet, Nicolas
    Chang, Lin
    Bowers, John E.
    Nam, Sae Woo
    Mirin, Richard P.
    OPTICS EXPRESS, 2020, 28 (07): : 9521 - 9532
  • [24] Efficient second harmonic generation in nanophotonic waveguides for optical signal processing
    Lengle, K.
    Bramerie, L.
    Gay, M.
    Simon, J. -C.
    Combrie, S.
    Lehoucq, G.
    De Rossi, A.
    APPLIED PHYSICS LETTERS, 2013, 102 (15)
  • [25] Efficient second harmonic generation in silicon covered lithium niobate waveguides
    方彬
    高盛伦
    王志章
    祝世宁
    李涛
    ChineseOpticsLetters, 2021, 19 (06) : 17 - 21
  • [26] Low loss orientation-patterned AlGaAs waveguides for quasi phase matched second harmonic generation
    Yu, Xiaojun
    Scaccabarozzi, Luigi
    Lin, Angie C.
    Fu, Jun-xian
    Kuo, Paulina S.
    NONLINEAR FREQUENCY GENERATION AND CONVERSION: MATERIALS, DEVICES, AND APPLICATIONS V, 2006, 6103
  • [27] WIDE RECTANGULAR LOW-LOSS WAVEGUIDES
    KAZANTSEV, YN
    KHARLASHKIN, OA
    RADIO ENGINEERING AND ELECTRONIC PHYSICS-USSR, 1971, 16 (06): : 1040 - +
  • [28] Low-loss Plasmonic Metamaterial Waveguides
    Shi, Yu
    Kim, Hong Koo
    2017 IEEE 17TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2017, : 890 - 893
  • [29] Low-loss filters in rectangular waveguides
    Alessandri, F
    Comparini, M
    Guglielmi, M
    Schmitt, D
    Vitulli, F
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2000, 27 (01) : 7 - 9
  • [30] The design of low-loss curved waveguides
    Robert N. Sheehan
    Steven Horne
    Frank H. Peters
    Optical and Quantum Electronics, 2008, 40 : 1211 - 1218