Axonal damage and loss of connectivity in nigrostriatal and mesolimbic dopamine pathways in early Parkinson's disease

被引:95
|
作者
Caminiti, Silvia Paola [1 ,2 ]
Presotto, Luca [2 ]
Baroncini, Damiano [3 ]
Garibotto, Valentina [4 ]
Moresco, Rosa Maria [5 ,6 ]
Gianolli, Luigi [7 ]
Volonte, Maria Antonietta [3 ]
Antonini, Angelo [8 ,9 ]
Perani, Daniela [1 ,2 ,7 ]
机构
[1] Univ Vita Salute San Raffaele, Via Olgettina 58, I-20132 Milan, Italy
[2] Ist Sci San Raffaele, Div Neurosci, Via Olgettina 58, I-20132 Milan, Italy
[3] Osped San Raffaele, Dept Neurol, Via Olgettina 60, I-20132 Milan, Italy
[4] Univ Geneva, Geneva Univ Hosp, Dept Med Imaging, Geneva, Switzerland
[5] IBFM CNR, Segrate, Italy
[6] Univ Milano Bicocca, Dept Hlth Sci, Tecnomed Fdn, Monza, Italy
[7] Osped San Raffaele, Nucl Med Unit, Via Olgettina 60, I-20132 Milan, Italy
[8] IRCCS Hosp San Camillo, Parkinsons Dis & Movement Disorders Unit, Via Alberoni 70, I-30126 Venice, Italy
[9] Univ Padua, Dept Neurosci DNS, Via Giustiniani 5, I-35128 Padua, Italy
关键词
Parkinson's disease; Positron emission tomography; Dopamine transporter; Axonal damage; Molecular connectivity; VENTRAL TEGMENTAL AREA; POSITRON-EMISSION-TOMOGRAPHY; FUNCTIONAL CONNECTIVITY; SUBSTANTIA-NIGRA; BRAIN; TRANSPORTER; PET; DISORDERS; PATHOLOGY; NETWORKS;
D O I
10.1016/j.nicl.2017.03.011
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
A progressive loss of dopamine neurons in the substantia nigra (SN) is considered the main feature of idiopathic Parkinson's disease (PD). Recent neuropathological evidence however suggests that the axons of the nigrostriatal dopaminergic system are the earliest target of a-synuclein accumulation in PD, thus the principal site for vulnerability. Whether this applies to in vivo PD, and also to the mesolimbic system has not been investigated yet. We used [C-11]FeCIT PET to measure presynaptic dopamine transporter (DAT) activity in both nigrostriatal and mesolimbic systems, in 36 early PD patients (mean disease duration in months +/- SD 21.8 +/- 10.7) and 14 healthy controls similar for age. We also performed anatomically-driven partial correlation analysis to evaluate possible changes in the connectivity within both the dopamine networks at an early clinical phase. In the nigrostriatal system, we found a severe DAT reduction in the afferents to the dorsal putamen (DPU) (eta(2) = 0.84), whereas the SN was the less affected region (eta(2) = 0.31). DAT activity in the ventral tegmental area (VTA) and the ventral striatum (VST) were also reduced in the patient group, but to a lesser degree (VST eta(2) = 0.71 and VTA eta(2) = 0.31). In the PD patients compared to the controls, there was a marked decrease in dopamine network connectivity between SN and DPU nodes, supporting the significant derangement in the nigrostriatal pathway. These results suggest that neurodegeneration in the dopamine pathways is initially more prominent in the afferent axons and more severe in the nigrostriatal system. Considering PD as a disconnection syndrome starting from the axons, it would justify neuroprotective interventions even if patients have already manifested clinical symptoms.
引用
收藏
页码:734 / 740
页数:7
相关论文
共 50 条
  • [1] Evidence for axonal damage in dorsal and ventral dopamine pathways in early Parkinson's disease
    Caminiti, S.
    Baroncini, D.
    Presotto, L.
    Garibotto, V.
    Moresco, R.
    Gianolli, L.
    Antonini, A.
    Perani, D.
    JOURNAL OF ALZHEIMERS DISEASE, 2016, 52 : S63 - S64
  • [2] Nigrostriatal dopamine transporter availability in early Parkinson's disease
    Fazio, Patrik
    Svenningsson, Per
    Cselenyi, Zsolt
    Halldin, Christer
    Farde, Lars
    Varrone, Andrea
    MOVEMENT DISORDERS, 2018, 33 (04) : 592 - 599
  • [3] IMPAIRED FINGER DEXTERITY AND NIGROSTRIATAL DOPAMINE LOSS IN PARKINSON'S DISEASE
    Kim, J.
    Lee, M. S.
    PARKINSONISM & RELATED DISORDERS, 2018, 46 : E15 - E15
  • [4] Impaired finger dexterity and nigrostriatal dopamine loss in Parkinson’s disease
    S. H. Lee
    M. J. Lee
    C. H. Lyoo
    H. Cho
    M. S. Lee
    Journal of Neural Transmission, 2018, 125 : 1333 - 1339
  • [5] Impaired finger dexterity and nigrostriatal dopamine loss in Parkinson's disease
    Lee, S. H.
    Lee, M. J.
    Lyoo, C. H.
    Cho, H.
    Lee, M. S.
    JOURNAL OF NEURAL TRANSMISSION, 2018, 125 (09) : 1333 - 1339
  • [6] Mesolimbic dopamine and anterior cingulate cortex connectivity changes lead to impulsive behaviour in Parkinson's disease
    Strafella, Antonio P.
    BRAIN, 2019, 142 : 496 - 498
  • [7] Are Dopamine Oxidation Metabolites Involved in the Loss of Dopaminergic Neurons in the Nigrostriatal System in Parkinson's Disease?
    Herrera, Andrea
    Munoz, Patricia
    Steinbusch, Harry W. M.
    Segura-Aguilar, Juan
    ACS CHEMICAL NEUROSCIENCE, 2017, 8 (04): : 702 - 711
  • [8] EFFECT OF GABAERGIC DRUGS ON DOPAMINE CATABOLISM IN THE NIGROSTRIATAL AND MESOLIMBIC DOPAMINERGIC PATHWAYS OF THE RAT
    GUNDLACH, AL
    BEART, PM
    JOURNAL OF PHARMACY AND PHARMACOLOGY, 1981, 33 (01) : 41 - 43
  • [9] Diffusion tensor imaging and tractography of the nigrostriatal and mesolimbic pathways on 3 Tesla MRI: Comparison of Parkinson's disease with normal controls
    Kumari, R.
    Khushwaha, S.
    Gupta, R.
    MOVEMENT DISORDERS, 2009, 24 : S198 - S198
  • [10] MRI evaluation of asymmetry of nigrostriatal damage in the early stage of early-onset Parkinson's disease
    Wang, Jianli
    Yang, Qing X.
    Sun, Xiaoyu
    Vesek, Jeffrey
    Mosher, Zachary
    Vasavada, Megha
    Chu, Jonathan
    Kanekar, Sangam
    Shivkumar, Vikram
    Venkiteswaran, Kala
    Subramanian, Thyagarajan
    PARKINSONISM & RELATED DISORDERS, 2015, 21 (06) : 590 - 596