Unphysical kinetic effects in particle-in-cell modeling of laser wakefield accelerators

被引:49
作者
Cormier-Michel, Estelle [1 ,2 ]
Shadwick, B. A. [3 ]
Geddes, C. G. R. [1 ]
Esarey, E. [1 ,2 ]
Schroeder, C. B. [1 ]
Leemans, W. P. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA
[2] Univ Nevada, Dept Phys, Reno, NV 89557 USA
[3] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 01期
关键词
D O I
10.1103/PhysRevE.78.016404
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Unphysical heating and macroparticle trapping that arise in the numerical modeling of laser wakefield accelerators using particle-in-cell codes are investigated. A dark current free laser wakefield accelerator stage, in which no trapping of background plasma electrons into the plasma wave should occur, and a highly nonlinear cavitated wake with self-trapping, are modeled. Numerical errors can lead to errors in the macroparticle orbits in both phase and momentum. These errors grow as a function of distance behind the drive laser and can be large enough to result in unphysical trapping in the plasma wake. The resulting numerical heating in intense short-pulse laser-plasma interactions grows much faster and to a higher level than the known numerical grid heating of an initially warm plasma in an undriven system. The amount of heating, at least in the region immediately behind the laser pulse, can, in general, be decreased by decreasing the grid size, increasing the number of particles per cell, or using smoother interpolation methods. The effect of numerical heating on macroparticle trapping is less severe in a highly nonlinear cavitated wake, since trapping occurs in the first plasma wave period immediately behind the laser pulse.
引用
收藏
页数:17
相关论文
共 45 条
[1]   HIGH-ORDER SPLINE INTERPOLATIONS IN THE PARTICLE SIMULATION [J].
ABE, H ;
SAKAIRI, N ;
ITATANI, R ;
OKUDA, H .
JOURNAL OF COMPUTATIONAL PHYSICS, 1986, 63 (02) :247-267
[2]  
AKHIEZER AI, 1956, SOV PHYS JETP-USSR, V3, P696
[3]   Clouds-in-clouds, clouds-in-cells physics for many-body plasma simulation (Reprinted from the Journal of Computational Physics, vol 3, pg 494-511, 1969) [J].
Birdsall, CK ;
Fuss, D .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 135 (02) :141-148
[4]  
Birdsall C. K., 1991, PLASMA PHYS VIA COMP
[5]  
Boris JP etal, 1970, P C NUMERICAL SIMULA, P3
[6]   Transverse-wake wave breaking [J].
Bulanov, SV ;
Pegoraro, F ;
Pukhov, AM ;
Sakharov, AS .
PHYSICAL REVIEW LETTERS, 1997, 78 (22) :4205-4208
[7]   PLASMA OSCILLATIONS OF A LARGE NUMBER OF ELECTRON BEAMS [J].
DAWSON, JM .
PHYSICAL REVIEW, 1960, 118 (02) :381-389
[8]   PARTICLE SIMULATION OF PLASMAS [J].
DAWSON, JM .
REVIEWS OF MODERN PHYSICS, 1983, 55 (02) :403-447
[9]   DEVELOPMENT OF A PLASMA WAVE-GUIDE FOR HIGH-INTENSITY LASER-PULSES [J].
DURFEE, CG ;
LYNCH, J ;
MILCHBERG, HM .
PHYSICAL REVIEW E, 1995, 51 (03) :2368-2389
[10]   Thermal effects in plasma-based accelerators [J].
Esarey, E. ;
Schroeder, C. B. ;
Cormier-Michel, E. ;
Shadwick, B. A. ;
Geddes, C. G. R. ;
Leemans, W. P. .
PHYSICS OF PLASMAS, 2007, 14 (05)