First Passage Time Densities through Holder curves

被引:2
作者
Lee, Jimyeong [1 ]
机构
[1] Gran Sasso Sci Inst, Viale Francesco Crispi 7, I-67100 Laquila, Italy
来源
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS | 2018年 / 15卷 / 02期
关键词
First Passage Time Densities; Brownian motion; Heat equation;
D O I
10.30757/ALEA.v15-31
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that for a standard Brownian motion, there exists a firstpassage-time density function through a Holder curve with exponent greater than 1/2. With a property of local time of a standard Brownian motion and adopting the theories of partial differential equations in Cannon (1984) and the strategies in Fasano (2005) and Carinci et al. (2016), we find a sufficient condition for existence of the density function. We also show that this density function is proportional to the space derivative of the Green function of the heat equation with Dirichlet boundary condition at the moving boundary.
引用
收藏
页码:837 / 849
页数:13
相关论文
共 9 条
[1]   BOUNDARY CROSSING IDENTITIES FOR BROWNIAN MOTION AND SOME NONLINEAR ODE'S [J].
Alili, L. ;
Patie, P. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (11) :3811-3824
[2]  
[Anonymous], 1991, Graduate Texts in Mathematics
[3]   On boundary crossing probabilities for diffusion processes [J].
Borovkov, K. ;
Downes, A. N. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2010, 120 (02) :105-129
[4]  
Cannon J. R., 1984, ENCY MATH ITS APPL, V23
[5]  
Carinci G., 2016, SPRINGERBRIEFS MATH, V12
[6]  
Fasano A., 2005, MAT A, V11
[7]   ON AN INTEGRAL-EQUATION FOR 1ST-PASSAGE-TIME PROBABILITY DENSITIES [J].
RICCIARDI, LM ;
SACERDOTE, L ;
SATO, S .
JOURNAL OF APPLIED PROBABILITY, 1984, 21 (02) :302-314
[8]  
SHIRYAEV A., 2006, Lectures in Mathematics ETH Zurich
[9]   A Transition to Sharp Timing in Stochastic Leaky Integrate-and-Fire Neurons Driven by Frozen Noisy Input [J].
Taillefumier, Thibaud ;
Magnasco, Marcelo .
NEURAL COMPUTATION, 2014, 26 (05) :819-859