Neighborhood unions and extremal spanning trees

被引:22
作者
Flandrin, Evelyne [1 ]
Kaiser, Tomas [2 ,3 ]
Kuzel, Roman [2 ,3 ]
Li, Hao [1 ,4 ]
Ryjacek, Zdenek [2 ,3 ]
机构
[1] Univ Paris 11, CNRS, LRI,UMR8623, F-91405 Orsay, France
[2] Univ W Bohemia, Dept Math, Plzen 30614, Czech Republic
[3] Charles Univ Prague, Inst Theoret Comp Sci, CR-11636 Prague, Czech Republic
[4] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
关键词
spanning spider; spanning tree; neighborhood union; Hamilton path; traceable graph;
D O I
10.1016/j.disc.2007.04.071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize a known sufficient condition for the traceability of a graph to a condition for the existence of a spanning tree with a bounded number of leaves. Both of the conditions involve neighborhood unions. Further, we present two results on spanning spiders (trees with a single branching vertex). We pose a number of open questions concerning extremal spanning trees. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2343 / 2350
页数:8
相关论文
共 13 条
[1]   Maximal trees with bounded maximum degree in a graph [J].
Aung, M ;
Kyaw, A .
GRAPHS AND COMBINATORICS, 1998, 14 (03) :209-221
[2]   HAMILTONIAN PROPERTIES OF GRAPHS WITH LARGE NEIGHBORHOOD UNIONS [J].
BAUER, D ;
FAN, GH ;
VELDMAN, HJ .
DISCRETE MATHEMATICS, 1991, 96 (01) :33-49
[3]   METHOD IN GRAPH THEORY [J].
BONDY, JA ;
CHVATAL, V .
DISCRETE MATHEMATICS, 1976, 15 (02) :111-135
[4]  
Chvatal V., 1972, DISCRETE MATH, V2, P111, DOI DOI 10.1016/0012-365X(72)90079-9
[5]   NEIGHBORHOOD UNIONS AND HAMILTONIAN PROPERTIES IN GRAPHS [J].
FAUDREE, RJ ;
GOULD, RJ ;
JACOBSON, MS ;
SCHELP, RH .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 47 (01) :1-9
[6]   A NEW SUFFICIENT CONDITION FOR HAMILTONIAN GRAPHS [J].
FRAISSE, P .
JOURNAL OF GRAPH THEORY, 1986, 10 (03) :405-409
[7]   Spanning spiders and light-splitting switches [J].
Gargano, L ;
Hammar, M ;
Hell, P ;
Stacho, L ;
Vaccaro, U .
DISCRETE MATHEMATICS, 2004, 285 (1-3) :83-95
[8]   A sufficient condition for a graph to have a k-tree [J].
Kyaw, A .
GRAPHS AND COMBINATORICS, 2001, 17 (01) :113-121
[9]  
LASVERGNAS M, 1971, CR ACAD SCI A MATH, V272, P1297
[10]  
LIU Y, 1986, J CHANGSHA RAILWAY I, V4, P105