A Robust Ion-Conductive Biopolymer as a Binder for Si Anodes of Lithium-Ion Batteries

被引:409
作者
Liu, Jie [1 ]
Zhang, Qian [2 ]
Zhang, Tao [2 ]
Li, Jun-Tao [2 ]
Huang, Ling [1 ]
Sun, Shi-Gang [1 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Coll Energy, Xiamen 361005, Peoples R China
关键词
biopolymers; binders; ion-conductivity; silicon anodes; lithium-ion batteries; GUAR GUM; ELECTROCHEMICAL PERFORMANCE; NEGATIVE ELECTRODES; FACILE SYNTHESIS; POLYMER BINDER; SILICON ANODES; CARBON; ELECTROLYTES; NANOWIRES; HYDROGEL;
D O I
10.1002/adfm.201500589
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Binders have been reported to play a key role in improving the cycle performance of Si anode materials of lithium-ion batteries. In this study, the biopolymer guar gum (GG) is applied as the binder for a silicon nanoparticle (SiNP) anode of a lithium-ion battery for the first time. Due to the large number of polar hydroxyl groups in the GG molecule, a robust interaction between the GG binder and the SiNPs is achieved, resulting in a stable Si anode during cycling. More specifically, the GG binder can effectively transfer lithium ions to the Si surface, similarly to polyethylene oxide solid electrolytes. When GG is used as a binder, the SiNP anode can deliver an initial discharge capacity as high as 3364 mAh g(-1), with a Coulombic efficiency of 88.3% at the current density of 2100 mA g(-1), and maintain a capacity of 1561 mAh g(-1) after 300 cycles. The study shows that the electrochemical performance of the SiNP anode with GG binder is significantly improved compared to that of a SiNP anode with a sodium alginate binder, and it demonstrates that GG is a promising binder for Si anodes of lithium-ion batteries.
引用
收藏
页码:3599 / 3605
页数:7
相关论文
共 35 条
[1]  
Abdallah M., 2004, Port. Electrochim. Acta, V22, P161
[2]   Highly conductive PEO-like polymer electrolytes [J].
Abraham, KM ;
Jiang, Z ;
Carroll, B .
CHEMISTRY OF MATERIALS, 1997, 9 (09) :1978-1988
[3]   Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries [J].
Bridel, J. -S. ;
Azais, T. ;
Morcrette, M. ;
Tarascon, J. -M. ;
Larcher, D. .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :1229-1241
[4]   Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance [J].
Chen, Shuangqiang ;
Bao, Peite ;
Huang, Xiaodan ;
Sun, Bing ;
Wang, Guoxiu .
NANO RESEARCH, 2014, 7 (01) :85-94
[5]   Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries [J].
Cui, Li-Feng ;
Yang, Yuan ;
Hsu, Ching-Mei ;
Cui, Yi .
NANO LETTERS, 2009, 9 (09) :3370-3374
[6]   COMPLEXES OF ALKALI-METAL IONS WITH POLY(ETHYLENE OXIDE) [J].
FENTON, DE ;
PARKER, JM ;
WRIGHT, PV .
POLYMER, 1973, 14 (11) :589-589
[7]   pH sensitive alginate-guar gum hydrogel for the controlled delivery of protein drugs [J].
George, M. ;
Abraham, T. E. .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2007, 335 (1-2) :123-129
[8]   High-Rate Capability Silicon Decorated Vertically Aligned Carbon Nanotubes for Li-Ion Batteries [J].
Gohier, Aurelien ;
Laik, Barbara ;
Kim, Ki-Hwan ;
Maurice, Jean-Luc ;
Pereira-Ramos, Jean-Pierre ;
Cojocaru, Costel Sorin ;
Pierre Tran Van .
ADVANCED MATERIALS, 2012, 24 (19) :2592-2597
[9]   Blue-shifting hydrogen bonds [J].
Hobza, P ;
Havlas, Z .
CHEMICAL REVIEWS, 2000, 100 (11) :4253-4264
[10]   Facile synthesis of Si/TiO2 (anatase) core-shell nanostructured anodes for rechargeable Li-ion batteries [J].
Hwa, Yoon ;
Kim, Won-Sik ;
Yu, Byeong-Chul ;
Kim, Jae-Hun ;
Hong, Seong-Hyeon ;
Sohn, Hun-Joon .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2014, 712 :202-206