Time decay rates of the isotropic non-Newtonian flows in Rn

被引:1
作者
Dong, Bo-Qing [1 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
关键词
L-2; decay; spectral decomposition; non-Newtonian flows;
D O I
10.1007/s10255-006-0353-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with time decay rates for weak solutions to a class system of isotropic incompressible non-Newtonian fluid motion in R. With the use of the spectral decomposition methods of Stokes operator, the optimal decay estimates of weak solutions in L-2 norm are derived under the different conditions on the initial velocity. Moreover, the error estimates of the difference between non-Newtonian flow and Navier-Stokes flow are also investigated.
引用
收藏
页码:99 / 106
页数:8
相关论文
共 16 条
[1]  
Bo Qing Dong, 2005, Acta Mathematica Sinica, V48, P1065
[2]  
Bohme G., 1987, SERIES APPL MATH MEC
[3]  
DONG BQ, 2004, J PARTIAL DIFFERENTI, V17, P255
[4]   The decay rates of strong solutions for Navier-Stokes equations [J].
He, C ;
Hsiao, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 268 (02) :417-425
[5]   On the decay properties of solutions to the non-stationary Navier-Stokes equations in R3 [J].
He, C ;
Xin, ZP .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2001, 131 :597-619
[6]   ON L2 DECAY OF WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS IN RN [J].
KAJIKIYA, R ;
MIYAKAWA, T .
MATHEMATISCHE ZEITSCHRIFT, 1986, 192 (01) :135-148
[7]  
Ladyzhenskaya O., 1970, BOUNDARY VALUE PROBL
[8]  
Ladyzhenskaya O. A., 1969, MATH THEORY VISCOUS
[9]   On the movement of a viscous fluid to fill the space [J].
Leray, J .
ACTA MATHEMATICA, 1934, 63 (01) :193-248
[10]  
Lions J. L., 1969, QUELQUES METHODES RE