Quantum oligopoly

被引:22
作者
Lo, CF [1 ]
Kiang, D
机构
[1] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China
[2] Nanyang Technol Univ, Natl Inst Educ, Dept Nat Sci, Singapore 637616, Singapore
来源
EUROPHYSICS LETTERS | 2003年 / 64卷 / 05期
关键词
D O I
10.1209/epl/i2003-00269-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based upon a modi. cation of Li et al.' s " minimal" quantization rules (Phys. Lett. A, 306 (2002) 73), we investigate the quantum version of the Cournot and Bertrand oligopoly. In the Cournot oligopoly, the profit of each of the N firms at the Nash equilibrium point rises monotonically with the measure of the quantum entanglement. Only at maximal entanglement, however, does the Nash equilibrium point coincide with the Pareto optimal point. In the Bertrand case, the Bertrand Paradox remains for finite entanglement (i.e., the perfectly competitive stage is reached for any N greater than or equal to 2), whereas with maximal entanglement each of the N firms will still have a non-zero shared profit. Hence, the Bertrand Paradox is completely resolved. Furthermore, a perfectly competitive market is reached asymptotically for N --> infinity in both the Cournot and Bertrand oligopoly.
引用
收藏
页码:592 / 598
页数:7
相关论文
共 10 条
  • [1] Multiplayer quantum games
    Benjamin, SC
    Hayden, PM
    [J]. PHYSICAL REVIEW A, 2001, 64 (03): : 4
  • [2] Bertrand J., 1883, Journal de Savants, V67, P499
  • [3] Bierman H. S., 1998, Game Theory with Economic Applications
  • [4] Cournot A. A., 1838, Researches into the Mathematical Principles of the Theory of Wealth
  • [5] Quantum games and quantum strategies
    Eisert, J
    Wilkens, M
    Lewenstein, M
    [J]. PHYSICAL REVIEW LETTERS, 1999, 83 (15) : 3077 - 3080
  • [6] Gravelle H., 1992, MICROECONOMICS
  • [7] Continuous-variable quantum games
    Li, H
    Du, JF
    Massar, S
    [J]. PHYSICS LETTERS A, 2002, 306 (2-3) : 73 - 78
  • [8] GENERALIZED MULTIMODE SQUEEZED STATES
    LO, CF
    SOLLIE, R
    [J]. PHYSICAL REVIEW A, 1993, 47 (01): : 733 - 735
  • [9] MULTIMODE BOSONIC REALIZATION OF THE SU(1,1) LIE-ALGEBRA
    LO, CF
    LIU, KL
    [J]. PHYSICAL REVIEW A, 1993, 48 (04): : 3362 - 3364
  • [10] Quantum strategies
    Meyer, DA
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (05) : 1052 - 1055