Air pollution modifies floral scent trails

被引:96
作者
McFrederick, Quinn S. [1 ]
Kathilankal, James C. [1 ]
Fuentes, Jose D. [1 ]
机构
[1] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA
基金
美国国家科学基金会;
关键词
hydrocarbons; terpenes; ozone; hydroxyl radical; pollinators; pollution; oxidants;
D O I
10.1016/j.atmosenv.2007.12.033
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Floral hydrocarbons provide essential signals to attract pollinators. As soon as they are emitted to the atmosphere, however, hydrocarbons are destroyed by chemical reactions involving pollutants such as ozone. It is therefore likely that increased air pollution interferes with pollinator attracting hydrocarbon signals. To test this hypothesis, a Lagrangian diffusion model was used to determine the position of air parcels away from hydrocarbon sources and to estimate the rate of chemical destruction of hydrocarbons as air parcels moved across the landscape. The hydrocarbon compounds linalool, beta-myrcene, and beta-ocimene were chosen because they are known to be common scents released from flowers. The suppressed ambient abundances of volatile organic compounds were determined in response to increased regional levels of ozone, hydroxyl, and nitrate radicals. The results indicate that the documented increases in air pollution concentrations, from pre-industrial to present times, can lead to reductions in volatile compound concentrations insects detect as they pollinate flowers. For highly reactive volatiles the maximum downwind distance from the source at which pollinators can detect the scents may have changed from kilometers during pre-industrial times to < 200 m during the more polluted conditions of present times. The increased destruction of floral signals in polluted air masses may have important implications for both pollinators and signaling plants. When patches of flowers are further apart than the visual range of pollinators, such as in fragmented landscapes, the loss of scent signals may mean that pollinators spend more time searching for patches and less time foraging. This decrease in pollinator foraging efficiency will simultaneously decrease the pollinator's reproductive output and the amount of pollen flow in flowering plants. Published by Elsevier Ltd.
引用
收藏
页码:2336 / 2348
页数:13
相关论文
共 43 条
[1]  
[Anonymous], 1999, CHEM UPPER LOWER ATM
[2]   RATE CONSTANTS FOR THE GAS-PHASE REACTIONS OF CIS-3-HEXEN-1-OL, CIS-3-HEXENYLACETATE, TRANS-2-HEXENAL, AND LINALOOL WITH OH AND NO3 RADICALS AND O-3 AT 296+/-2 K, AND OH RADICAL FORMATION YIELDS FROM THE O-3 REACTIONS [J].
ATKINSON, R ;
AREY, J ;
ASCHMANN, SM ;
CORCHNOY, SB ;
SHU, YH .
INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, 1995, 27 (10) :941-955
[3]   Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review [J].
Atkinson, R ;
Arey, J .
ATMOSPHERIC ENVIRONMENT, 2003, 37 :S197-S219
[4]  
ATKINSON R, 1994, J PHYS CHEM REF DATA, V2, P216
[5]   Flux footprints within and over forest canopies [J].
Baldocchi, D .
BOUNDARY-LAYER METEOROLOGY, 1997, 85 (02) :273-292
[6]   Identification of floral volatiles involved in recognition of oilseed rape flowers, Brassica napus by honeybees, Apis mellifera [J].
Blight, MM ;
LeMetayer, M ;
Delegue, MHP ;
Pickett, JA ;
MarionPoll, F ;
Wadhams, LJ .
JOURNAL OF CHEMICAL ECOLOGY, 1997, 23 (07) :1715-1727
[7]   Flower constancy, insect psychology, and plant evolution [J].
Chittka, L ;
Thomson, JD ;
Waser, NM .
NATURWISSENSCHAFTEN, 1999, 86 (08) :361-377
[8]   Recognition of flowers by pollinators [J].
Chittka, Lars ;
Raine, Nigel E. .
CURRENT OPINION IN PLANT BIOLOGY, 2006, 9 (04) :428-435
[9]  
Dobson Heidi E.M., 1994, P47
[10]   Biochemical and molecular genetic aspects of floral scents [J].
Dudareva, N ;
Pichersky, E .
PLANT PHYSIOLOGY, 2000, 122 (03) :627-633