Fractal Intersections and Products via Algorithmic Dimension

被引:5
|
作者
Lutz, Neil [1 ]
机构
[1] Iowa State Univ, Dept Comp Sci, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
Effective dimension; Kolmogorov complexity; fractal geometry; KOLMOGOROV COMPLEXITY; HAUSDORFF DIMENSION; SETS; CAPACITIES;
D O I
10.1145/3460948
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Algorithmic fractal dimensions quantify the algorithmic information density of individual points and may be defined in terms of Kolmogorov complexity. Thiswork uses these dimensions to bound the classical Hausdorff and packing dimensions of intersections and Cartesian products of fractals in Euclidean spaces. This approach shows that two prominent, fundamental results about the dimension of Borel or analytic sets also hold for arbitrary sets.
引用
收藏
页数:15
相关论文
共 50 条