Fractal Intersections and Products via Algorithmic Dimension

被引:5
|
作者
Lutz, Neil [1 ]
机构
[1] Iowa State Univ, Dept Comp Sci, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
Effective dimension; Kolmogorov complexity; fractal geometry; KOLMOGOROV COMPLEXITY; HAUSDORFF DIMENSION; SETS; CAPACITIES;
D O I
10.1145/3460948
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Algorithmic fractal dimensions quantify the algorithmic information density of individual points and may be defined in terms of Kolmogorov complexity. Thiswork uses these dimensions to bound the classical Hausdorff and packing dimensions of intersections and Cartesian products of fractals in Euclidean spaces. This approach shows that two prominent, fundamental results about the dimension of Borel or analytic sets also hold for arbitrary sets.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Document retrieval via fractal dimension
    Marsh, R
    CISST'03: PROCEEDING OF THE INTERNATIONAL CONFERENCE ON IMAGING SCIENCE, SYSTEMS AND TECHNOLOGY, VOLS 1 AND 2, 2003, : 87 - 93
  • [2] A Fractal Dimension for Measures via Persistent Homology
    Adams, Henry
    Aminian, Manuchehr
    Farnell, Elin
    Kirby, Michael
    Mirth, Joshua
    Neville, Rachel
    Peterson, Chris
    Shonkwiler, Clayton
    TOPOLOGICAL DATA ANALYSIS, ABEL SYMPOSIUM 2018, 2020, 15 : 1 - 31
  • [3] Surface Characterization of Paper Products by Profilometry with a Fractal Dimension Analysis
    Lee, Yong Ju
    Ko, Young Chan
    Moon, Byoung Geun
    Jin Kim, Hyoung
    BIORESOURCES, 2023, 18 (02) : 3978 - 3994
  • [4] Unstable directions and fractal dimension for skew products with overlaps in fibers
    Mihailescu, Eugen
    MATHEMATISCHE ZEITSCHRIFT, 2011, 269 (3-4) : 733 - 750
  • [5] Unstable directions and fractal dimension for skew products with overlaps in fibers
    Eugen Mihailescu
    Mathematische Zeitschrift, 2011, 269 : 733 - 750
  • [6] ON THE ALGORITHMIC DIMENSION OF MODELS
    VENTSOV, IG
    DOKLADY AKADEMII NAUK SSSR, 1989, 305 (01): : 21 - 24
  • [7] ALGORITHMIC DIMENSION OF LATTICES
    DZGOEV, VD
    SIBERIAN MATHEMATICAL JOURNAL, 1991, 32 (03) : 535 - 538
  • [8] Fractal dimension for fractal structures
    Fernandez-Martinez, M.
    Sanchez-Granero, M. A.
    TOPOLOGY AND ITS APPLICATIONS, 2014, 163 : 93 - 111
  • [9] Fourier dimension and fractal dimension
    Evans, AK
    CHAOS SOLITONS & FRACTALS, 1998, 9 (12) : 1977 - 1982
  • [10] The estimation of the fractal dimension of a Gaussian field via Euler characteristic
    Taheriyoun, Ali Reza
    Shafie, Khalil
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (02): : 681 - 707