Numerical simulations of 3D free surface flows by a multilayer Saint-Venant model

被引:35
作者
Audusse, E. [1 ]
Bristeau, M. O. [1 ]
Decoene, A. [2 ,3 ]
机构
[1] Inst Natl Rech Informat & Automat, F-78153 Le Chesnay, France
[2] INRIA, F-78401 Chatou, France
[3] EDF, LNHE, F-78401 Chatou, France
关键词
multilayer Saint-Venant system; free surface flows; hydrostatic assumption; finite volumes;
D O I
10.1002/fld.1534
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a multilayer Saint-Venant system for the simulation of 3D free surface flows with friction and viscosity effects. A vertical discretization of a Navier-Stokes system approximation deduced from a precise analysis of the shallow water assumption leads to a set of coupled Saint-Venant-type systems. The idea is to obtain an accurate description of the vertical profile of the horizontal velocity while preserving the robustness and the computational efficiency of the usual Saint-Venant system. For each time-dependent layer, a Saint-Venant-type system is solved on the same 2D mesh by a kinetic solver using a finite volume framework. The free surface is directly deduced from the sum of layers water depth. We validate the model with some numerical academic and realistic examples. We present comparisons with simulations computed with the hydrostatic Navier-Stokes solver of the Telemac-3D code developed by Electricite de France. Copyright (C) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:331 / 350
页数:20
相关论文
共 16 条
[1]   A well-balanced positivity preserving "second-order" scheme for shallow water flows on unstructured meshes [J].
Audusse, E ;
Bristeau, MO .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 206 (01) :311-333
[2]   A multilayer Saint-Venant model: Derivation and numerical validation [J].
Audusse, E .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2005, 5 (02) :189-214
[3]   A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows [J].
Audusse, E ;
Bouchut, F ;
Bristeau, MO ;
Klein, R ;
Perthame, B .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (06) :2050-2065
[4]  
AUDUSSE E, UNPUB INT J APPL MAT
[5]  
Bristeau MO, 2001, 4282 INRIA
[6]   Numerical simulation of two-layer shallow water flows through channels with irregular geometry [J].
Castro, MJ ;
García-Rodríguez, JA ;
González-Vida, JM ;
Macías, J ;
Parés, C ;
Vázquez-Cendón, ME .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 195 (01) :202-235
[7]  
DalMaso G, 1995, J MATH PURE APPL, V74, P483
[8]  
Decoene A., 2006, Hydrostatic model for three-dimensional free surface flows and numerical schemes
[9]   A new two-dimensional shallow water model including pressure effects and slow varying bottom topography [J].
Ferrari, S ;
Saleri, F .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2004, 38 (02) :211-234
[10]  
Gerbeau JF, 2001, DISCRETE CONT DYN-B, V1, P89