Optimal decay rates of solutions to hyperbolic conservation laws with damping

被引:0
作者
Zhang, Nangao [1 ]
Zhu, Changjiang [1 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510641, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2022年 / 73卷 / 01期
基金
中国国家自然科学基金;
关键词
Euler equations with damping; Ml-model; Time-weighted energy method; Optimal convergence rate; NONLINEAR DIFFUSION WAVES; COMPRESSIBLE EULER EQUATIONS; P-SYSTEM; ASYMPTOTIC-BEHAVIOR; CONVERGENCE-RATES; EXISTENCE; PROFILE; MODEL;
D O I
10.1007/s00033-021-01657-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the asymptotic behavior of solutions to the system of hyperbolic conservation laws with damping. In particular, a system includes compressible Euler equations with damping, Ml-model, etc. Under some smallness conditions on initial perturbations, we prove that the solutions to the Cauchy problem of the system globally exist and time-asymptotically converge to corresponding equilibrium state, and further give the optimal convergence rate. The approach adopted is the technical time-weighted energy method combined with the Green's function method.
引用
收藏
页数:32
相关论文
共 27 条